

MILITARY COTS

VITA 62 COMPLIANT POWER SUPPLY

18V - 40V

EMI Filtering Long Holdup

500W

91%

Continuous Input Voltage

Outputs

Maximum Output Power

Typical Efficiency

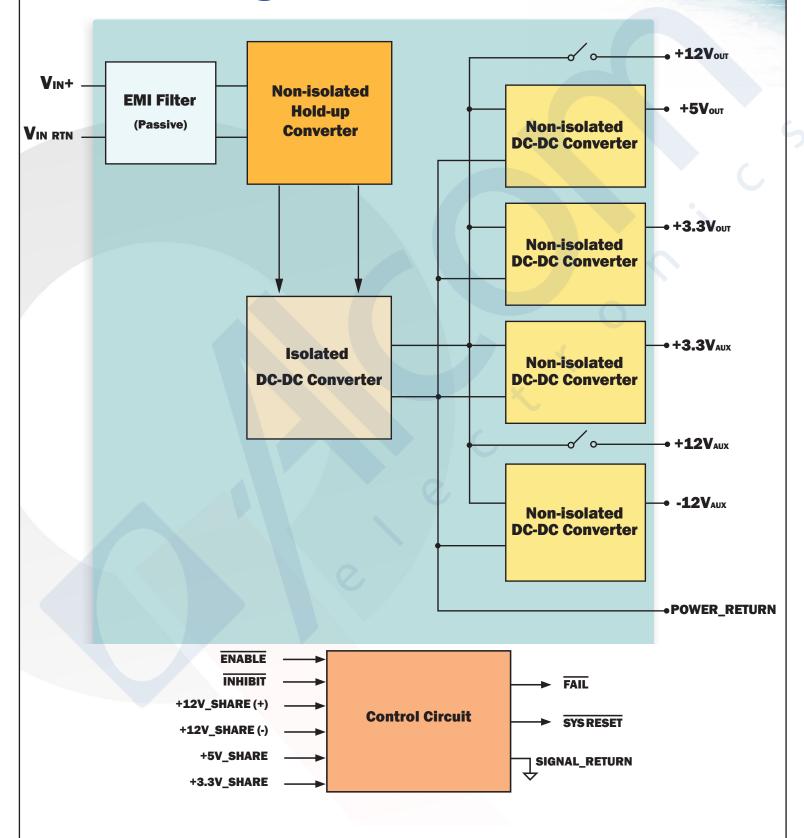
Operation: -40°C to 85°C (at Card Edge)

▶ Outputs:

VS1: +12V @ 40A= 480W VS2: +3.3V @ 20A= 66W +5.0V VS3: @ 40A = 200W $+3.3V_{AUX}$ @ 6A = 20W(AUX) +12V_{AUX} @ 1A = 12W (AUX) (AUX) 1A = 12W-12V_{AUX} @

- ► Maximum Total Output Power: 500W
- ► Extended Holdup Time of over 50ms at 500W
- ► Input Transient Protection up to 100V
- ► Reverse Polarity Protection
- ► Input EMI Filtering
- ► -40°C to 85°C Operating Temperature
- ► Over-current, over-voltage and over-temperature protection
- ► Current Sharing on VS1, VS2 and VS3
- ► Standard VITA 62 Controls
- ▶ I²C Function
 - Supports IPMI/PMBus/VITA 46.11

▶ Compliance:


(Full Load Operation Down to 18Vin)

- **VITA 62**
- MIL-STD-461
 - CE101 CE102 CS101 CS106
 - CS114 CS115 CS116
- VITA 47 / MIL-STD-810G
 - ESD Protection
 - Shock
 - Vibration
 - Rapid Decompression
 - Corrosion Resistance
 - Fungus Resistance
 - Altitude
 - Humidity
- Designed to be compliant with:
- MIL-STD-704 (A-F)

Block Diagram for VPX-3U-DC28TH-001

VPX-3U-DC28TH-001 Input Characteristics

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
ABSOLUTE MAXIMUM RATINGS					
Input Voltage					
Non-Operating	-1		60	V	Continuous
Operating			40	V	Continuous
Operating Transient Protection			100	V	100ms transient
Isolation Voltage			1500	V	Input to Output and Input/Output to Case
Operating Temperature	-40		85	°C	Card edge temperature
Storage Temperature	-40		105	°C	
ELECTRICAL CHARACTERISTICS					
Input Voltage					
Continuous	18		40	V	See Figure 1 for output de-rating
Transient	18		100	V	100V Transient for 100ms
Under-Voltage Lockout					
Turn-On Input Voltage Threshold	16	17	18	V	
FAIL*/SYSRESET* Signal					
Pull-up resistance	100			Ω	Pull-up to 3.3V on backplane, compliant to VITA 46.0
Sinking current			40	mA	Pull-up to 3.3V on backplane, compliant to VITA 46.0
FEATURE CHARACTERISTICS					
VITA 62 ON/OFF Control					Control signals referenced to SIGNAL_RETURN
ENABLE* high-state Voltage	2		3.6	V	ENABLE* regards a no-connect as a high
ENABLE* low-state Voltage			0.8	V	4
INHIBIT* high-state Voltage	2		3.6	V	INHIBIT* regards a no-connect as a high
INHIBIT* low-state Voltage			0.8	V	
HOLD-UP CHARACTERISTICS					<u> </u>
Hold-up Time					
500W Output Power	50			ms	Full temperature range, See Figure 2 for other loads
RELIABILITY CHARACTERISTICS					
Calculated MTBF (MIL-217) MIL-HDBK-217F		1670		kHrs	Ground Benign, T _A = 25°C
Calculated MTBF (MIL-217) MIL-HDBK-217F		182		kHrs	Ground Mobile, T _A = 25°C

Input Voltage Spike

INPUT VOLTAGE SPIKE SUPPRESSION						
Module Operates through these Spikes						
Input Voltage Spike (Centered on Vin)						
±250V, 100μs, Emax = 15mJ	MIL-STD-1275D					
\pm 200V, 10μs, Rs \leq 0.5Ω	MIL-STD-461C (CS06); DEF-STAN 61-5					
±400V, 5μs, Rs ≤ 0.5Ω	MIL-STD-461C (CS06)					
\pm 600V, 10μs, Rs = 50Ω	RTCA/DO-160E					

Regarding EMC testing with LISNs, the 2 x 50 uH series inductance of standard LISNs adversely affects the performance of the VPX holdup controller when switching full power loads. Such a large series source inductance (50 uH in each power lead) is not generally encountered in a 28 V DC source of such high power rating. Therefore, SynQor recommends that when testing with 50 uH LISNs, the setup should include a 5 mF or larger differential capacitor across the VPX power input leads. Alternately, 5 uH LISNs may be used with no additional capacitor.

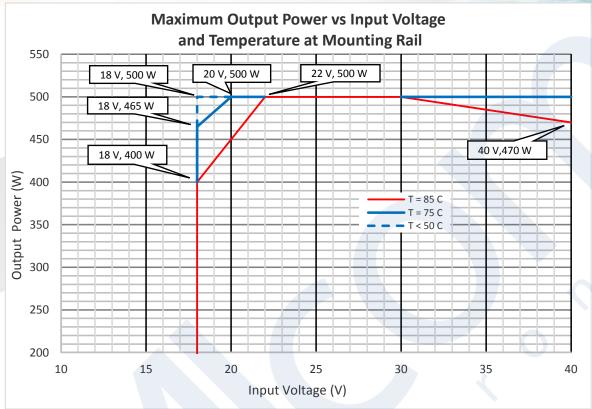


Figure 1: Maximum Output Power vs Input Voltage and Temperature

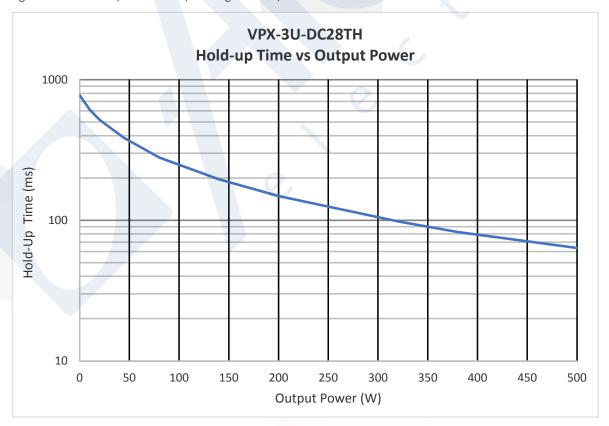


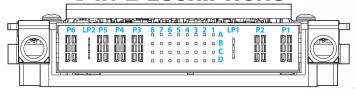
Figure 2: Hold-up Time vs Output Power

VPX-3U-DC28TH-001 Output Characteristics

Parameter	+12V	+5V	+3.3V	+3.3VAUX	+12V _{AUX}	-12V _{AUX}	
OUTPUT CHARACTERISTICS	<u>'</u>						
Output Voltage Set Point	12V	5V	3.3V	3.3V	12V	-12V	
See Note 1	(+/-1.5%)	(+/-1.5%)	(+/-1.5%)	(+/-1.5%)	(+/-1.5%)	(+/-1.5%)	
Total Output Voltage Range	12V	5V	3.3V	3.3V	12V	-12V	
See Note 2	(+/-4%)	(+/-3%)	(+/-3%)	(+/-2%)	(+/-4%)	(+/-3%)	
Output Voltage Ripple (pk-pk)	80mV	50mV	40mV	40mV	80mV	80mV	
See Note 3	BUILLA	JUILLA	401117	401110	OUIIIV	BUILLA	
Operating Current Range	0-40A	0-40A	0-20A	0-6A	0-1A	0-1A	
Maximum Total Output Power = 500W	U-4UA	U-40A	0-20A	U-0A	0-1A		
Over-Voltage Protection	14.8V 6.0V		6.0V	6.0V	14.8V	NA	
Current-Limit Inception	50.4A 80A		40A	40A	2A	1.8A	
Maximum Output Capacitance	10mF	10mF	10mF	10mF	1mF	10mF	
MAXIMUM TOTAL OUTPUT POWER	ER 500W						

Note 1: 28Vin, 50% load

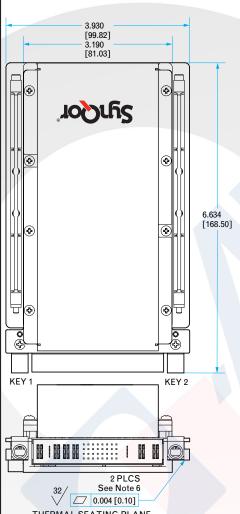
Note 2: Over line, load, temperature

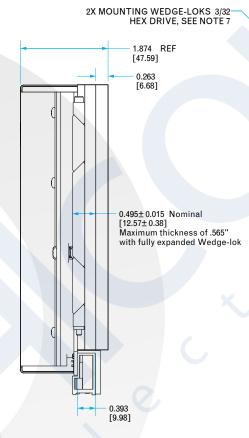

Note 3: Full Load, measured with 1µF capacitor and 10uF tantalum capacitor

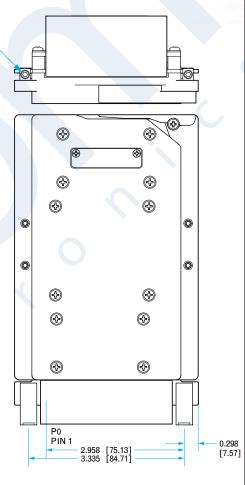
Maximum Total Output Power=500W (Full Temperature Range)

Temperature specifications are relative to the temperature at the thermal interface, on the flange opposite the wedge locks.

PIN DESCRIPTIONS


3U PO Connector


		50 PO Confilector			
PIN	Function	DESCRIPTION			
P1	-DC_IN	Vin-			
P2	+DC_IN	Vin+			
LP1	CHASSIS	Chassis			
A1	STARTUP_SYNC	Startup synchronization			
B1	HU_GOOD*	Output signal pin will be driven low to indicate the hold-up feature is armed. Open drain 12 V maximum.			
C1	HU_ACTIVE*	Output signal pin will be driven low to indicate the hold-up feature is delivering load power. Open drain 12 V maximum.			
D1	HU_WARN*	Output signal pin will be driven low to indicate less than 50% of hold-up energy storage remains. Open drain 12 V maximum.			
A2	No Connection				
B2	FAIL*	When any of the output is not within specification, FAIL* signal will be driven low to indicate a failure			
C2	INHIBIT*	Input control signal as defined in VITA 62, referenced to SIGNAL_RETURN			
D2	ENABLE*	Input control signal as defined in VITA 62, referenced to SIGNAL_RETURN			
A3	+3.3V_SHARE	Active current share for +3.3V_MAIN			
В3	+12V_AUX	+12V auxiliary output voltage, 1A rated			
С3	No Connection				
D3	No Connection				
A4					
B4	+3.3V_AUX	3V_AUX +3.3V auxiliary output voltage, 6A rated (1.5A per pin)			
C4	13.51_407	13.34 auxilial y dutput voltage, on fateu (1.34 per pili)			
D4					
A5	GA0*	Geographical Address, See Note 1			
B5	GA1*	Geographical Address, See Note 1			
C5	SM0	Primary I ² C Clock Line, See Note 1			
D5	SM1	Primary I ² C Data Line, See Note 1			
A6	SM2	Redundant I ² C Clock Line, See Note 1			
В6	SM3	Redundant I ² C Data Line, See Note 1			
C6	-12V_AUX	-12V auxiliary output voltage, 1A rated			
D6	SYSRESET*	System Reset is actively low. It will float when all outputs are within specification			
A7	+12V_SHARE(+)	Active current share differential pair for +12V MAIN			
B7	+12V_SHARE(-)	-			
C7	+5V_SHARE	Active current share for +5V_MAIN			
D7	SIGNAL_RETURN	Ground pin for control signals			
A8	+12V_SENSE(+)	Should be connected to +12V_MAIN either remotely or at the connector			
B8	+3.3V_SENSE(+)	Should be connected to +3.3V_MAIN either remotely or at the connector			
C8	+5V_SENSE(+)	Should be connected to +5V_MAIN either remotely or at the connector			
D8	SENSE_RETURN	Should be connected to POWER_RETURN either remotely or at the connector			
P3	+5V_MAIN	+5V main output voltage, 40A rated			
P4	POWER_RETURN	Common output voltage return pin, 40A rated per pin			
P5	POWER_RETURN				
LP2	+3.3V_MAIN	+3.3V main output voltage, 20A rated			
P6	+12V_MAIN	+12V main output voltage, 40A rated			


Note 1: Refer to SynQor "VPX 3U I²C Operator's Guide" for details regarding the I²C interface.

Mechanical Diagram

NOTES:

- - HM811C3-B84F

- 4. WEIGHT: SEE TABLE 5. SEE TABLE FOR KEYWAY POSITION AND ANGLE 6. FLATNESS AND SURFACE FINISH REQUIREMENT APPLIES TO BOTH RAILS
- 7. RECOMMENDED TORQUE PER EACH MOUNTING WEDGE-LOK: 7 IN-LBS [80 N-CM].

VPX-3U-DC28HT-001						
We	2.4lbs (1.1kg)					
Key Position	TE Connectivity Part Number					
1	0°	1-1469492-1				
2	0°	1-1469492-1				

THERMAL SEATING PLANE

Application Notes

Control Features

ENABLE*	Standard VITA 62 control signal. It is used to turn off all of the output voltages when it is high, including +3.3V_AUX. When it is pulled low to SIGNAL_RETURN, +3.3V_AUX will be turned on and the status of the other outputs will be dependent on the state of INHIBIT*. ENABLE* signal regards a noconnect as a high.
INHIBIT*	Standard VITA 62 control signal. It is used to turn off all the output voltages except +3.3V_AUX. When it is pulled low to SIGNAL_RETURN, VS1, VS2, VS3, +12V_AUX and -12V_AUX will be turned off. INHIBIT* signal regards a no-connect as a high. At power-on, if ENABLE* and INHIBIT* are configured to turn all outputs on, +3.3V_AUX will be powered up 100ms prior to when the other outputs are powered up.
FAIL*	FAIL* signal is used to indicate a failure has occurred. It will be pulled low when any of the outputs are outside the voltage specification. FAIL* is an active low open-drain signal. It is expected there will be a pull-up resistor on the backplane to 3.3V. A typical resistor value is $4.7k\Omega$.
SYSRESET*	SYSRESET* signal is an output generated from the module. It is used to indicate that startup has completed. At power-on, SYSRESET* is pulled low. It will be high impedance when all outputs are within voltage specification. It will be pulled low if any failure has occurred or if the outputs are disabled by the user during operation. SYSRESET* signal is an active low open-drain signal. It is expected there will be a pull-up resistor on the backplane to 3.3V. A typical resistor value is $4.7k\Omega$.
HU_GOOD*	HU_GOOD* is an output signal generated from the module. It indicates that the hold-up feature is armed with stored energy. HU_GOOD* is an active-low open-drain signal. The signal will be pulled low when the hold-up is armed, and high impedance otherwise. It is expected there will be a pull-up resistor on the backplane to 3.3V. A typical resistor value is 4.7kΩ.
HU_ACTIVE*	HU_ACTIVE* is an output signal generated from the module. It indicates that the hold-up feature is in operation, using stored energy to power the load. HU_ACTIVE* is an active-low open-drain signal. The signal will be pulled low when hold-up is running, and high impedance otherwise. It is expected there will be a pull-up resistor on the backplane to 3.3V. A typical resistor value is $4.7k\Omega$.
HU_WARN*	HU_WARN* is an output signal generated from the module. It indicates that the hold-up feature is in operation and more than 50% of initial stored energy has been consumed by the load. HU_WARN* is an active-low open-drain signal. The signal will be pulled low when more than 50% of initial stored energy has been depleted, and high impedance otherwise. It is expected there will be a pull-up resistor on the backplane to 3.3V. A typical resistor value is $4.7k\Omega$.

VITA 62 Control States

ENABLE*	INHIBIT*	+3.3V_AUX	VS1, VS2, VS3, +12V_AUX, -12V_AUX
HIGH	HIGH	OFF	OFF
LOW	HIGH	ON	ON
HIGH	LOW	OFF	OFF
LOW	LOW	ON	OFF

Parallel Operation

143V MAATRI	Astive assument aboving an +12V/ MATN is assumented an like models. To implement the assument above					
+12V_MAIN	Active current sharing on +12V_MAIN is supported on like models. To implement the current share					
	function, +12V_SHARE(+) and +12V_SHARE(-) pins should be routed between all paralleled modules					
	as a differential pair. ENABLE*, INHIBIT* and STARTUP_SYNC should be connected together.					
	High speed data communication is transmitted on these two lines. Control state is transmitted					
	between themaster unit and slave units on a cycle-by-cycle basis. Adding capacitance to these share					
	lines must be avoided.					
+5V_MAIN &	Active current sharing on +5V_MAIN and +3.3V_MAIN is also supported on like models, but with an					
+3.3V_MAIN	analog sharing scheme that is different than the digital sharing scheme for the +12V_MAIN.					
	To implement the current sharing function, +5V_SHARE, +3.3V_SHARE, ENABLE*, INHIBIT* and					
	STARTUP_SYNC should be connected together between all paralleled modules. These SHARE pins					
	are referenced to POWER_RETURN. A clean ground plane is important, and ground drop between					
	each module should be minimized.					
+3.3V_AUX,	Active current sharing is not supported on auxiliary outputs. However, all these auxiliary rails have					
+12V_AUX &	OR'ing MOSFETs or OR'ing diodes implemented, so that they can still be operated in parallel. Total					
-12V_AUX	output current on these rails should not exceed the current rating of a single module.					

VPX Module Qualification (VITA 47 Compliant)

Test Name	Method
Random Vibration	MIL-STD-810, 514.6 - Procedure I, Class V3
Shock	MIL-STD-810, 516.6 - Procedure I, VI, Class OS2
Altitude	MIL-STD-810, 500.5 - Procedure I, II, III
Fungus Resistance	MIL-STD-810, 508.6
Corrosion Resistance	ASTM G85, Annex A4
Humidity	MIL-STD-810, 507.5 - Procedure II
High Temperature	MIL-STD-810, 501.5 - Procedure I, II
Low Temperature	MIL-STD-810, 502.5 - Procedure I, II
Temperature Cycling	MIL-STD-202, 107 - Class C4
ESD	EN61000-4-2, Level 3; 8kV Air Discharge

Internal Mil-COTS Converter and Filter Module Screening

Screening	Process Description	S-Grade	M-Grade	
Baseplate Operating Temperature		-55 °C to +100 °C	-55 °C to +100 °C	
Storage Temperature		-65 °C to +135 °C	-65 °C to +135 °C	
Pre-Cap Inspection	IPC-A-610, Class III	•	•	
Temperature Cycling	MIL-STD-883F, Method 1010, Condition B, 10 Cycles		•	
Burn-In	100 °C Baseplate	12 Hours	96 Hours	
Final Electrical Test	100%	25 °C	-55 °C, +25 °C, +100 °C	
Final Visual Inspection	MIL-STD-883F, Method 2009	•	•	

Ordering Information / Part Numbering

Series		Package Size (U)		Input Range	Mil Std Filtering		Output Voltage Combination Code		Packaging Options
VPX	-	3U	-	DC28	ТН	-	001	-	Y1Y2Y3
VPX	-	3U	-	DC28: 28V	TH: Input Transient Protection	-	001 : 001	-	Y1: Internal Module Screening
					Extended Holdup Time				S - Standard (MCOTS)
									M - Military (MCOTS)
									Y2: Conformal Coating
								١	N - No Conformal Coating
									C - Conformal Coating
									Y3: I ² C Function
									2 - I ² C
								ı	

Examples:

VPX-3U-DC28TH-001-SN2 VPX-3U-DC28TH-001-MC2

Not all combinations make valid part numbers, please contact SynQor for availability.

PATENTS

SynQor holds numerous U.S. patents, one or more of which apply to most of its power conversion products. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with U.S. patent laws. SynQor's patents include the following:

7,050,309 7,765,687 7,787,261

8,149,597 8,644,027

WARRANTY

SynQor offers a one (1) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.