

Full color IPS Display with 24 Bit RGB interface

Left: 105.4x67.1x2.65mm Right: 114.0x84.0x4.8mm (incl. PCAP)

FEATURES

- 4.3" TFT FULL COLOR
- AACS TECHNOLOGY WITH IPS FOR UNLIMITED VIEWING ANGLE
- 480x272x3 DOTS
- 1000/800cd/m² WITHOUT/WITH TOUCHPANEL
- 24-BIT RGB INTERFACE
- INTEGRATED CONTROLLER SC7283
- SINGLE SUPPLY 3.3V
- WIDE TEMPERATURE RANGE (T_{OP} -20°C +70°C)
- OPTIONALLY WITH PCAP AND TOUCH CONTROLLER GT911

ORDERING CODES

- 4.3" TFT, 480x272 IPS, 1000cd/m²
- AS ABOVE BUT WITH OPTICALLY BONDED PCAP

EA R480X-43ALW EA TFT043-42BITC

ACCESSORY

- ZIF CONNECTOR 0.5mm, BOTTOM CONTACT
- ZIF CONNECTOR 0.5mm, TOP CONTACT

EA WF050-40S EA WF050-40ST

CONTENT

- GENERAL FEATURES
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL SPECIFICATIONS
- OPTICAL SPECIFICATIONS
- BLOCK DIAGRAM
- PIN DESCRIPTION
- TIMING CHARACTERISTICS
- PCAP TOUCHPANEL GT911
- OUTLINE DIMENSION
- RELIABILITY AND INSPECTION STANDARD
- PRECAUTIONS

1. General Features

Item	Spec	Remark
Display Mode	Normally Black Transmissive	
Viewing Direction	FREE	
Input Signals	RGB 24 bit	
Outside Dimensions	105.4(W) x67.1(H) x2.65(D)	
Outside Dimensions	114.0(W) x84.0(H) x4.77(D)	With CTP
Active Area	95.04mm(W)×53.86mm(H)	
Number of Pixels	480(RGB)×272	
Dot Pitch	0.198mm(H) ×0.198mm(W)	
Pixel Arrangement	RGB Vertical stripes	
Drive IC	SC7283	0
CTP IC	GT911	With CTP

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded may cause operation or damage to the unit.

ITEM	Sym.	Min.	Тур.	Max.	Unit	Remark
Power for Circuit Driving	Vdd	-0.3	-	4.6	V	
Power for Circuit Logic	Vt	-0.3	-	Vdd+0.3	V	
Storage Humidity	Hst	10	-		%RH	
Storage Temperature	Tst	-30	-	80	°C	At
Operating Ambient Humidity	Нор	10	-		%RH	25±5℃
Operating Ambient temperature	T _{OP}	-20	-	70	°C	

3. Electrical Specification

3.1 Driving TFT LCD Panel

Item		Sym.	Min	Тур.	Max	Unit	Note
Power for (Circuit Driving	VDD	3.0	3.3	3.6	V	
Logic Input	Low Voltage	VIL	0	-	0.3Vdd	V	
Voltage	High Voltage	Vін	0.7Vdd	-	Vdd	V	
Logic Output	Low Voltage	Vol	0	-	0.2Vdd	V	
Voltage	High Voltage	Vон	0.8Vdd		-	V	
Power Consumption	Black Mode	Pb	-	20	25	mA	
	Standby Mode	Pw	-	40	50	uA	

3.2 Driving Backlight

Item	Sym.	Min	Тур.	Max	Unit	Note
Backlight driving voltage	Vf	24.4	25.6	27.2	V	
Backlight driving current	lF	-	40	-	mA	
Backlight Power Consumption	WBL	2	1024	-	mW	
Life Time	-	-	30,000	-		Note 3

Note 1: (Unless specified, the ambient temperature Ta=25°C)

Note 2: The recommended operating conditions refer to a range in which operation of this product is guaranteed. Should this range is exceeded, the operation cannot be guaranteed even if the values may be without the absolute maximum ratings.

Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

4.Optical Specifications

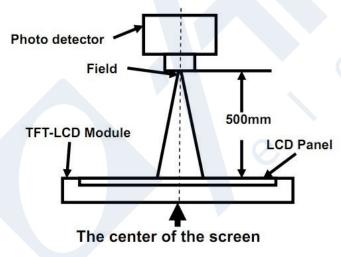
Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25 °C. The values specified are at an approximate distance 500mm from the LCD surface at a viewing angle of Φ and θ equal to 0°.

How	0		Values			
ltem	Sym.	Min.	Тур.	Max.	Unit	Note
Contrast Ratio	C/R	640	800	-		FIG.1
Module Luminance		900	1000		a d / m 2	EA R480X-43ALW
	L	700	800	-	cd/m ²	EA TFT043-42BITC
Response time	Tr+Tf	-	30	40	ms	FIG.2
	θτ	70	80	-		\sim
Viewing Angle	θв	70	80	-	Dograa	FIG.3
Viewing Angle	θ∟	70	80	-	Degree	O FIG.5
	θr	70	80	-	1	
	Wx	0.280	0.320	0.360	~	
	Wy	0.305	0.345	0.384		
	Rx	-	-	-		
Chromoticity	Ry	-	-	<u> </u>		
)Chromaticity	Gx	-		-		
	Gy	- 6	-	-		
	Bx	-	-	-		
	Ву	-	-	-		

4.1 Measurement System

Notes:

1. Contrast Ratio(CR) is defined mathematically as :


Surface Luminance with all white pixels

Contrast Ratio = -----

Surface Luminance with all black pixels

- 2. Surface luminance is the center point across the LCD surface 500mm from the surface with all pixels displaying white. For more information see FIG 1.
 - 3. Response time is the time required for the display to transition from white to black (Rising Time, Tr) and from black to white (Falling Time, Tf). For additional information see FIG 2.
 - 4. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Item	Photo detector	Field
Contrast Ratio		
Luminance	00.04	4.0
Chromaticity	SR-3A	1°
Lum Uniformity		
Response Time	BM-7A	2°

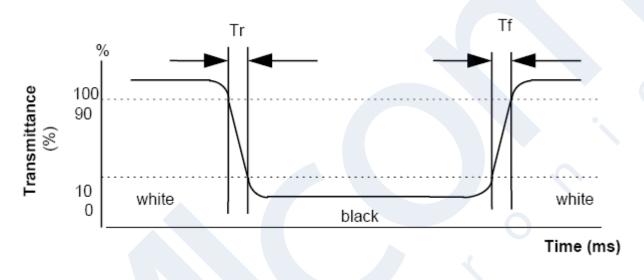
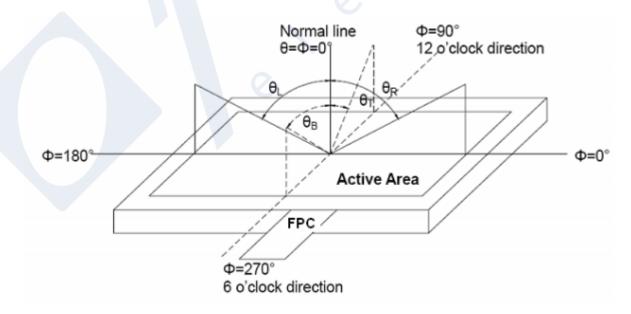
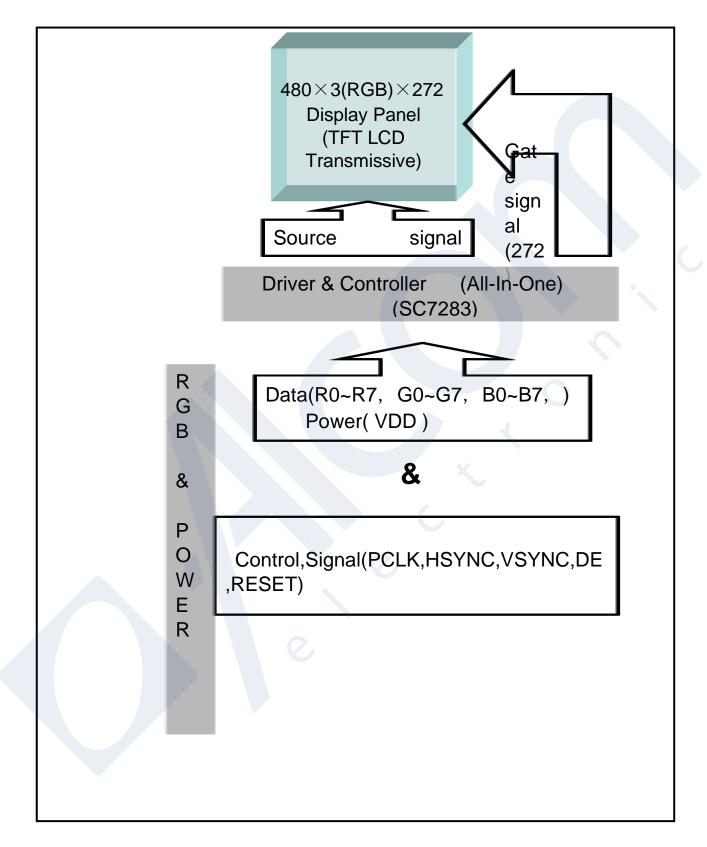


FIG. 2 The definition of Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".


Response Time = Rising Time(Tr) + Falling Time(Tf)

- Rising Time(Tr) : Full White 90% \rightarrow Full White 10% Transmittance.
- Falling Time(Tf) : Full White 10% \rightarrow Full White 90% Transmittance.


FIG. 3 The definition of Viewing Angle

Use Fig. 1(Test Procedure) under Measurement System to measure the contrast from the measuring direction specified by the conditions as the following figure.

5.Block Diagram

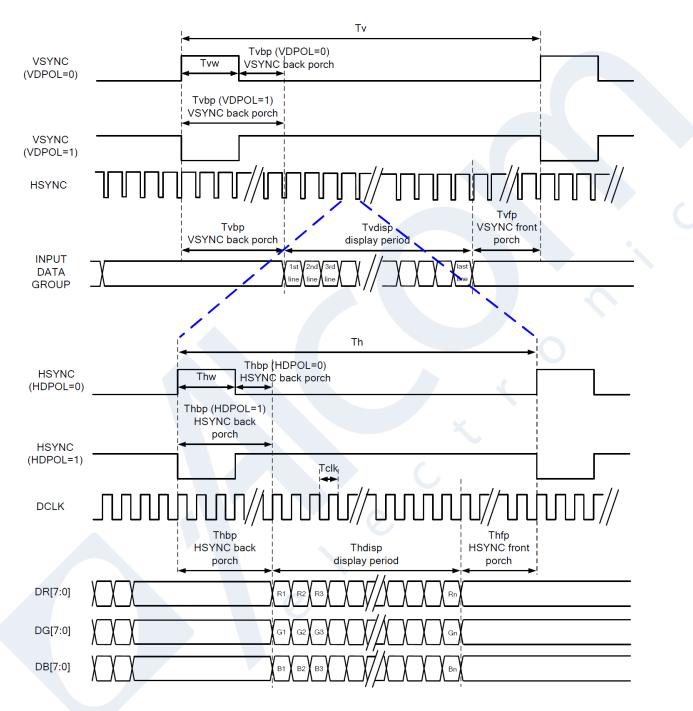
6.Pin Description 6.1 EA R480X-43ALW

Item	Symbol	Description
1	VLED-	B/L Power input PIN Cathode
2	VLED+	B/L Power input PIN anode
3	NC	
4	VDD	Power supply
512	R0R7	Red Data
1320	G0G7	Green Data
2128	B0B7	Blue Data
29	GND	Ground
30	DCLK	Data clock signal
31	NC	
32	HSYNC	Horizontal synchronizing signal
33	VSYNC	Vertical synchronizing signal
34	DE	Data ENABLE signal
35	NC	NC
36	GND	Ground
37	NC	
38	NC	
39	NC	
40	NC	

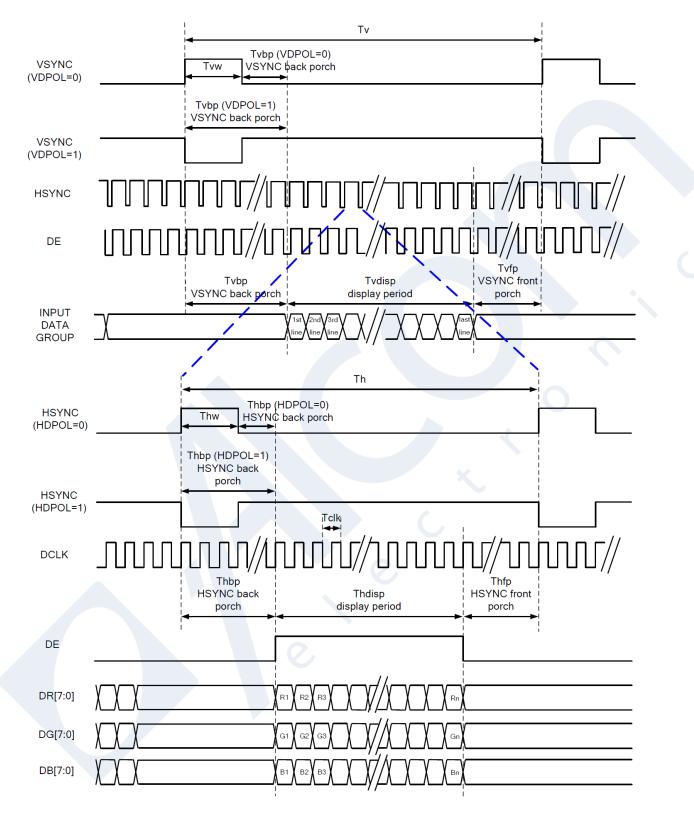
Note: FPC 40 pins, 0.5mm pitch

6.2 EA TFT043-42BITC with Touchpanel

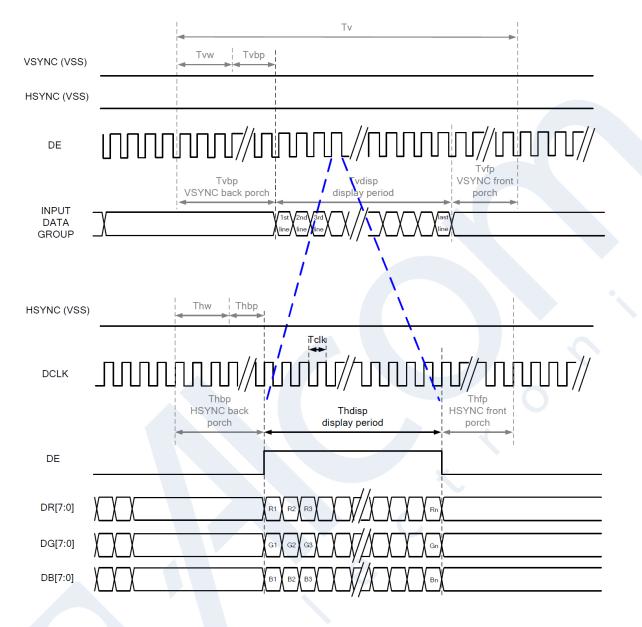
Item	Symbol	Description
1	VLED-	B/L Power input PIN Cathode
2	VLED+	B/L Power input PIN anode
3	TFT/CTP GND	TFT/CTP Ground
4	TFT/CTP VDD	TFT/CTP Power input
512	R0R7	Red Data
1320	G0G7	Green Data
2128	B0B7	Blue Data
29	TFT/CTP GND	TFT/CTP Ground
30	DCLK	Data clock signal
31	DISP	Standby Mode DISP="1", Normal operation DISP="0", Standby mode.
32	HSYNC	Horizontal synchronizing signal
33	VSYNC	Vertical synchronizing signal
34	DE	Data ENABLE signal
35	NC	NC
36	TFT RST	TFT reset pin
37	CTP RST	CTP reset pin
38	CTP SCL	CTP I2C clock
39	CTP SDA	CTP I2C data
40	CTP INT	CTP interrupt


Note: FPC 40 pins, 0.5mm pitch

7. Timing Characteristics


7.1 Timing Diagram and Input Setup Timing setting

7.1.1 SYNC Mode Timing Diagram



7.1.2 SYN-DE Mode Timing Diagram

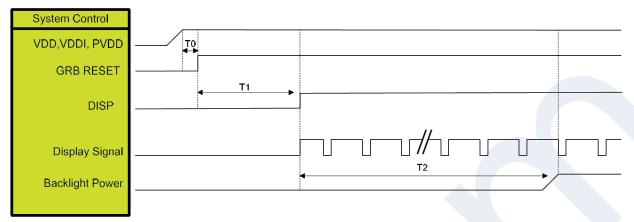
7.1.3 DE Mode Timing Diagram

RGB Mode Selection Table	DCLK	HSYNC	VSYNC	DE
SYNC - DE Mode	Input	Input	Input	Input
SYNC Mode	Input	Input	Input	GND
DE Mode	Input	GND	GND	Input

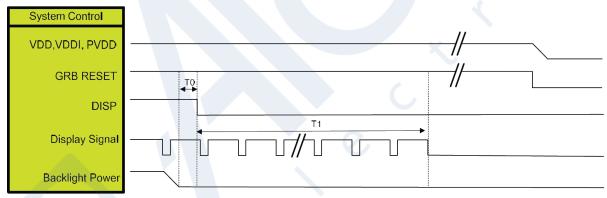
Note: "Input" means these signals are driven by host side.

7.2 Parallel 24 bit RGB Input Timing Table

Parallel 24-bit RGB Input Timing (PVDD=VDD=VDDI= 3.3V, AGND= 0V, TA=25°C)


480RGB X 272 Resolution Timing Table									
	Item	Symbol	Min.	Тур.	Max.	Unit	Remark		
DCLK	Frequency	Fclk	8	9	12	MHz			
DCI	LK Period	Tclk	83	111	125	ns			
	Period Time	Th	485	531	598	DCLK			
	Display Period	Thdisp		480		DCLK			
HSYNC	Back Porch	Thbp	3	43	43	DCLK	By H_BLANKING setting		
	Front Porch	Thfp	2	8	75	DCLK			
	Pulse Width	Thw	2	4	43	DCLK			
	Period Time	Τv	276	292	321	HSYNC			
	Display Period	Tvdisp		272		HSYNC			
VSYNC	Back Porch	Tvbp	2	12	12	HSYNC	By V_BLANKING setting		
	Front Porch	T∨fp	2	8	37	HSYNC			
	Pulse Width	Tvw	2	4	12	HSYNC			

Note: It is necessary to keep Tvbp =12 and Thbp =43 in sync mode. DE mode is unnecessary to keep it.


7.3 Power ON/OFF Sequence

7.3.1 Power On Sequence

Symbol	Description	Min. Time	Unit
то	System power stability to GRB RESET signal	0	ms
T1	GRB RESET= "High" to DISP="High"	10	ms
T2	Display Signal output to Backlight Power on	250	ms

7.3.2 Power Off Sequence

Sym <mark>bol</mark>	Description	Min. Time	Unit
то	Backlight Power off to DISP="Low"	5	ms
Т1	DISP="Low" to IC internal voltage discharge complete	80	ms

8. PCAP TOUCHPANEL

	Table 9	
Item	Specification	Unit
Touch panel Size	2.8 inches	
Active Area (Sensor)	45.4 (H) x 59.8 (V)	mm
Input type	5 Point multi touch	
Controller	GT911	
Interface mode	I ² C	
Normal mode operating current	typ. 8	mA

TIMING SPECIFICATIONS FOR CTP

I²C Communication

This module provides standard I²C interface for communication. In the system, this module always works in slave mode, all communications are initiated by master, and the baud rate can be up to 400K bps. The definition of I²C timing is as following:

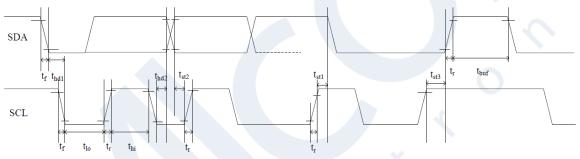


Fig.6 RGB Interface Timing Characteristics Test condition: 3.3V communication interface, 400Kbps, pull up resistor is 2K ohm

Symbol	MIN.	Max.	Unit
🖉 t _{lo}	0.9	-	us
t _{hi}	0.8	-	us
t _{st1}	0.4	-	us
t _{st3}	0.4	-	us
t _{hd1}	0.3	-	us
t _{st2}	0.4	-	us
t _{hd2}	0.4	-	us
	t _{lo} t _{hi} t _{st1} t _{st3} t _{hd1} t _{st2}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

This module has 2 sets of slave address 0xBA/0xBB & 0x28/29. Master can control Reset & INT pin to configure the slave address in power on initial state like following:

Power on diagram:

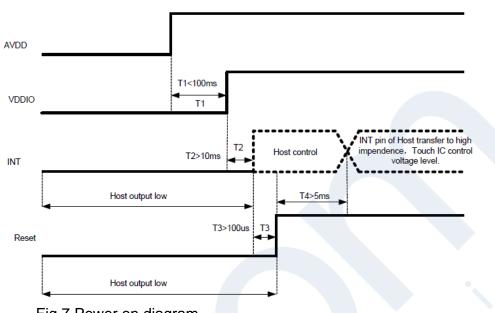


Fig.7 Power on diagram

Timing of setting slave address to 0x28/0x29:

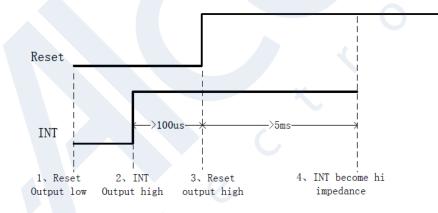
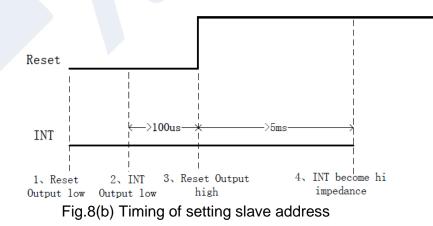



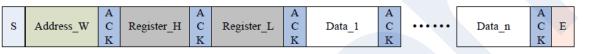
Fig.8(a) Timing of setting slave address

Timing of setting slave address to 0xBA/0xBB:

Data Transmission

(ex: slave address is 0xBA/0xBB)

Communication is always initiated by master, A high-to-low transition of SDA with SCL high is a start condition.


All addressing signal are serially transmitted to and from on bus in 8-bit word. This module sends a "0" to acknowledge when the addressing word is 0xBA/BB (or 0x28/0x29). This happens during the ninth clock cycle. If the slave address is not matched, this module will stay in idle state.

The data words are serially transmitted to and from in 9-bit formation: 8-bit data+1-bit ACK or NACK sent by module. Data changes during SCL low periods & keeps valid during SCL high.

A low-to-high transition of SDA with SCL high is a stop condition.

Write Data to module

(ex: slave address is 0xBA/0xBB)

Please check the above figure, master start the communication first, and then sends device address 0XBA preparing for a write operation.

After receiving ACK from module, master sends out 16-bit register address, and then the data word in 8-bit, which is going to be wrote into module.

The address pointer of module will automatically increase one after one byte writing, so master can sequentially write in one operation. When operation finished, master stop the communication.

Read Data from module

(ex: slave address is 0xBA/0xBB)

s	Address_W	A C K	Register_H	A C K	Register_L	A C K	Е	s	Address_R	A C K	Data_1	A C K		Data_n	N A C K	Е
		►Se	et start register	addre	ess ┥						► Re	ad dat	ta ┥			

Please check the above figure, master start the communication first, and then sends device address 0xBA for a write operation.

After receiving ACK from module, master sends out 16-bit register address, to set the address pointer of module. After receiving ACK, master produce start signal once again & send device address 0xBB, then read data word from module in 8-bit.

Module also supports sequential read operation, and the default setting is sequential read mode. Master shall send out ACK after every byte reading successfully but NACK after the last one. Then sends stop signal to finish the communication.

REGISTER INFORMATION OF MODULE

a) Real Time Order

(Write Only)

Addr	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x8040	Command	reset3:b	baseline		read diff o 4: baselir t				

b) Configuration Information

(R/W)

	Config Data	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
0x8047	Config_ Version			Ve	ersion of th	e configur	ation				
0x8048	X Output Max (Low Byte)				Posolutio	on of Y avi	5			6	
0x8049	X Output Max (High Byte)		Resolution of X axis								
0x804A	Y Output Max (Low Byte)				Deselutiv	an of V ovi		5			
0x804B	Y Output Max (High Byte)				Resolutio	on of Y axi	S				
0x804C	Touch Number		Res	erved			Touch nu	imber: 1~5	j		
0x804D	Module_ Switch1	Res	Reserved Stretch_rank X2Y Reserved INT trigger method 00: rising edge trigger 01: falling edge trigger								

							02: low level enquiry 03: high level enquiry		
0x804E	Module_ switch2			Res	erved				
0x804F	Shake_Count	Res	erved			Finger s	hake count		
0x8050	Filter	First_Filter	iginal coordinate is 1)						
0x8051	Large_Touch		Num	ber of tou	ch in large	e area			
0x8052	Noise_ Reduction	Res		Value of noise elimination (coefficient is 1, 0~15)					
0x8053	Screen_ Touch_Level		Threshold of touch grow out of nothing						
0x8054	Screen_ Leave_Level		d of touch	h grow out of nothing					
0x8055	Low_Power_ Control	Reserved			Time to low power consumption (0~15s)				
0x8056	Refresh_Rate	Res	erved		Coordi		nt rate (Cycle: 5+N ms)		
0x8057	x_threshold			Res	erved				
0x8058	y_threshold			1100	on to a				
0x8059	X_Speed_Limit			Res	erved				
0x805A	Y_Speed_Limit								
0x805B	Space		ent is 32)	.0	Blan		Boarder-bottom ient is 32)		
0x805C	Space	Blank area o (coeffici	of boarder-l ent is 32)	left	Bla		of Boarder-right ient is 32)		
0x805D	Stretch_Rate	Res	Reserved			P version i	retch (Stretch X/16 itch) s valid, published n is not)		
0x805E	Stretch_R0		Interval						
0x805F	Stretch_R1	Interval 2 coefficient							
0x8060	Stretch_R2	Interval 3 coefficient							
0x8061	Stretch_RM		All intervals base number						
0x8062	Drv_GroupA_ Num	All_Dr iving Rese	erved		Driver_	Group_A	_number		
0x8063	Drv_GroupB_	Reserved	I		Driver_	Group_B	_number		

_	Num								
0x8064	Sensor_Num	Se	nsor_Group_B_Nu	mber	Sen	Isor_Grou	up_A_Number		
0x8065	FreqA_factor	0	Driver frequency do	uble freque	ency coeffic	ient of D	river group A		
00000			GroupA_Free	quence = N	Iultiplier fac	tor * bas	eband		
0x8066	FreqB factor	0	Driver frequency do	-	-				
			GroupB_Free	quence = N	Iultiplier fac	tor * bas	eband		
0x8067	Pannel_								
	BitFreqL		Baseband of Driver	r group A\B	(1526HZ<	baseban	d<14600Hz)		
0x8068	Pannel_			2 .					
	BitFreqH								
0x8069	Pannel_Sensor								
	_TimeL	Time	e interval of the nei	bouring two	o driving sig	gnal (Unit	: us), Reserved.		
0x806A	Pannel_Sensor								
	_TimeH								
	Dennel Tu			Pannel_I	Drv_outp	Pan	nel_DAC_Gain		
0x806B	Pannel_Tx_ Gain		Reserved ut_R 0:Gain maxim						
	Gain			4 gears			Gain minimum		
		Pann				-	\sim		
0x806C	Pannel_Rx_	Pannel PGA R Pannel_Rx_Vcmi Par				Pan	nel_PGA_Gain		
0,0000	Gain	A_C		(4 ge	ears)		(8 gears)		
	Pannel_Dump_				Magnific	cation cos	efficient of original		
0x806D	Shift		Reserved		-		th power of 2)		
0x806E	Drv_Frame_	Reser	Cut	D-	A		Demost Num		
UXOUGE	Control	ved	auc	Frame_Dr	vivum		Repeat_Num		
0x806F	NC			Res	served				
0x8070	NC			Res	served				
0x8071	NC			Res	served				
0x8072	Stylus_Tx_		Undefined	(invalid)	when stylus	s priority:	=0)		
0.0012	Gain					_piloing	0,		
0x8073	Stylus_Rx_		Undefined	d (invalid)	when stylus	s priority:	=0)		
	Gain						-/		
0x8074	Stylus_Dump_	Magn	ification coefficient	of original	value (The	Nth powe	er of 2), Reserved		
	Shift		C.	2					
0x8075	Stylus_Driver_T		Stylus effe	ctive thres	hold (driving	g), Reser	ved		
	ouch_Level								
0x8076	Stylus_Sensor_ Touch_Level	Stylus effective threshold (sensing), Reserved							
	Stylus_								
0x8077	Control	Pen mode escape time out period (Unit: Sec)							
0x8078	Base_reduce	S-	S-Style improve quantity Reserved						
0x8079	NC			-	erved				

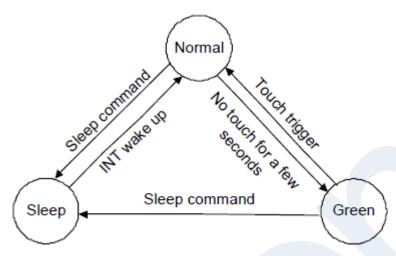
0x807A	Freq_Hopping_ Start	Frequency	Frequency hopping start frequency (Unit: 2KHz, 50 means 100KHz)							
0x807B	Freq_Hopping_ End	Frequency	nopping stop	frequency (Unit: 2KHz, 150 means 300KHz)						
0x807C	Noise_Detect_T imes	Detect_Stay_T mes	i	Detect_Confirm_Times						
0x807D	Hopping_Flag	Hoppi Re ng_E n	eserved	Detect_Time_Out						
0x807E	Hoppging_ Threshold	Large_Noise_	Large_Noise_Threshold Hopping_Hit_Threshold							
0x807F	Noise_ Threshold		Threshold of noise level							
0x8080	NC		Reserved							
0x8081	NC		Reserved							
0x8082	Hopping_seg1_ BitFreqL	Fraguanay								
0x8083	Hopping_seg1_ BitFreqH	Frequency	lopping segr	nent band 1 central frequency (for driver A/B)						
0x8084	Hopping_seg1_ Factor	Freque	ency hopping	segment 1 central frequency coefficient						
0x8085	Hopping_seg2_ BitFreqL	Frequency	nopping sear	nent band 2 central frequency (for driver A/B)						
0x8086	Hopping_seg2_ BitFreqH	Trequency								
0x8087	Hopping_seg2_ Factor	Freque	ency hopping	segment 2 central frequency coefficient						
0x8088	Hopping_seg3_ BitFreqL	Frequency	nonning eegr	nent band 3 central frequency (for driver A/B)						
0x8089	Hopping_seg3_ BitFreqH	Frequency hopping segment band 3 central frequency (for driver A/B)								
0x808A	Hopping_seg3_ Factor	Freque	Frequency hopping segment 3 central frequency coefficient							
0x808B	Hopping_seg4_ BitFreqL	Frequency	nopping segr	ment band 4 central frequency (for driver A/B)						
0x808C	Hopping_seg4_									

	BitFreqH									
0x808D	Hopping_seg4_ Factor	Frequency hopping segment	nt 4 central	frequency coefficient						
0x808E	Hopping_seg5_ BitFreqL	Frequency hopping segment bar	nd 5 centra	frequency (for driver A/B)						
0x808F	Hopping_seg5_ BitFreqH	r requency hopping segment bar	ia 5 centra	intequency (for timer A/D)						
0x8090	Hopping_seg5_ Factor	Frequency hopping segme	nt 5 central	frequency coefficient						
0x8091	NC	Re	Reserved							
0x8092	NC	Re	eserved							
0x8093	Key 1	Key 1 Position: 0-255 valid (0 mean key when 4 of the								
0x8094	Key 2	Key	Key 2 position							
0x8095	Key 3	Key	Key 3 position							
0x8096	Key 4	Key	4 position							
0x8097	Key_Area	Time limit for long press(1~16 s)	Touch va	alid interval setting: 0-15 valid						
0x8098	Key_Touch_Lev el	Key threshold of touch key								
0x8099	Key_Leave_Lev el	Key threshold of touch key								
0x809A	Key_Sens	KeySens_1(sensitivity coefficient of key 1, same below)		KeySens_2						
0x809B	Key_Sens	KeySens_3	×	KeySens_4						
0x809C	Key_Restrain	Finger from screen left after inhibition of key time(Unit:100ms,0 means 600ms)		pendent button pro key parameters						
0x809D	NC	Re Re	served							
0x809E	NC	Re	served							
0x809F	NC	Re	served							
0x80A0	NC	Re	eserved							
0x80A1	NC	Re	served							
0x80A2	Proximity_Drv_ Select	Drv_Start_Ch (start channel of o direction)	lriving	Drv_End_Ch (End channel)						
0-0040	Proximity_	Sens_Start_Ch (start channel of sensing Sens_End_Ch (End								
0x80A3	Sens_Select	direction) channel)								
0x80A4	Proximity_ Touch_Level	Proximity effective threshold value								
0x80A5	Proximity_ Leave_Level	Proximity ineffe	ctive thresh	nold value						

0x80A6	Proximity_Samp le_Add_Times	Frequency multification of proximity sensing channel.				
0x80A7	Proximity_Samp le_Dec_ValL	Sample value minus this value (16 bit), and accumulate, low byte.				
0x80A8	Proximity_Samp le_Dec_ValH	Sample value minus this value (16 bit), and accumulate, high byte.				
0x80A9	Proximity_Leav e_Shake_Count	exit proximity jitter count				
0x80AA	Self_Cap_Tx_g ain	self-capacitance sends gains				
0x80AB	Self_Cap_Rx_g ain	self-capacitance receive gains	5			
0x80AC	Self_Cap_Dump _Shift	Magnification coefficient of original value of self-capacitance (The Nth power of 2)	c - J			
0x80AD	SCap_Diff_Up_ Level_Drv	Self capacitance suppress floating rising threshold (driving direction)				
0x80AE	Scap_Merge_T ouch_Level_Drv	Self-capacitance Touch Level (driving direction)				
0x80AF	SCap_Pulse_Ti meL	Self-capacitance sampling time (low byte)				
0x80B0	SCap_Pulse_Ti meH	Self-capacitance sampling time (high byte)				
0x80B1	SCap_Diff_Up_ Level_Sen	Self capacitance suppress floating rising threshold (sensing direction)				
0x80B2	Scap_Merge_T ouch_Level_Se n	Self-capacitance Touch Level (sensing direction)				
0x80B3	NC	Reserved				
0x80B4	NC	Reserved				
0x80B5	NC	Reserved				
0x80B6	NC	Reserved				
0x80B7 ~ 0x80C4	Sensor_CH0~ Sensor_CH13	ITO Sensor corresponding chip channel number				
0x80C5 ~ 0x80D4	NC	Reserved				
0x80D5 ~ 0x80EE	Driver_CH0~ Driver_CH25	ITO Driver corresponding chip channel number				
0x80EF ~	NC	Reserved				

0x80FE		
0x80FF	Config_Chksum	configuration information verify (the complement number of total byte from 0x8047 to 0x80FE)
0x8100	Config_Fresh	signal of updated configuration (the host writes)

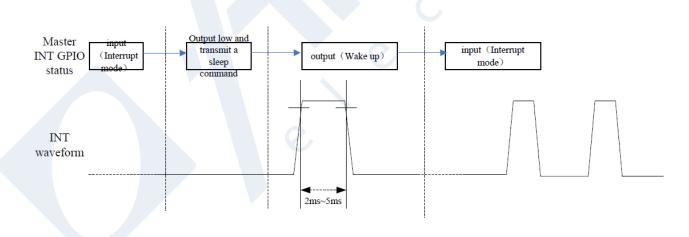
c) Coordinates Information


Addr	Access	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
0x8140	R			Produc	t ID (first b	yte, A	SCII)				
0x8141	R			Product	ID (second	byte,	ASCII)				
0x8142	R		Product ID (third byte, ASCII)								
0x8143	R		Product ID (forth byte, ASCII)								
0x8144	R			Firmwar	e version (HEX.lov	v byte)				
0x8145	R			Firmware	version (H	IEX.hig	h byte)				
0x8146	R			x coordir	nate resolut	ion (lov	v byte)				
0x8147	R			x coordin	ate resoluti	ion (hig	h byte)				
0x8148	R			y coordir	nate resolut	ion (lov	v byte)		Ť		
0x8149	R			y coordin	ate resoluti	ion (hig	h byte))			
0x814A	R		Ve	ndor_id (cu	rrent modul	e option	inform	ation)			
0x814B	R				Reserv	ed		0			
0x814C	R				Reserv	ed		\mathbf{U}			
0x814D	R				Reserv	ed	3				
0x814E	R/W	buffer status	large detect	Reserved		numb	er of to	uch points			
0x814F	R				track i	d					
0x8150	R			point 1	x coordina	te (low	byte)				
0x8151	R			point 1	x coordina	te (high	byte)				
0x8152	R			point 1	y coordina	ite (low	byte)				
0x8153	R			point 1	y coordina	te (high	byte)				
0x8154	R			Po	int 1 size (l	ow byte)				
0x8155	R			ро	int 1 size (h	igh byte	e)				
0x8156	R				Reserv	ed					
0x8157	R				track i	d					
0x8158	R			point 2	x coordina	te (low	byte)				
0x8159	R			point 2	x coordina	te (high	byte)				
0x815A	R		point 2 y coordinate (low byte)								
0x815B	R		point 2 y coordinate (high byte)								
0x815C	R		point 2 size (low byte)								
0x815D	R			ро	int 2 size (h	igh byte	e)				
0x815E	R				Reserv	ed					

0x815F	R	track id				
0x8160	R	point 3 x coordinate (low byte)				
0x8161	R	point 3 x coordinate (high byte)				
0x8162	R	point 3 y coordinate (low byte)				
0x8163	R	point 3 y coordinate (high byte)				
0x8164	R	point 3 size (low byte)				
0x8165	R	point 3 size (high byte)				
0x8166	R	Reserved				
0x8167	R	track id				
0x8168	R	point 4 x coordinate (low byte)				
0x8169	R	point 4 x coordinate (high byte)				
0x816A	R	point 4 y coordinate (low byte)				
0x816B	R	point 4 y coordinate (high byte)				
0x816C	R	point 4 size (low byte)				
0x816D	R	point 4 size (high byte)				
0x816E	R	Reserved				
0x816F	R	track id				
0x8170	R	point 5 x coordinate (low byte)				
0x8171	R	point 5 x coordinate (high byte)				
0x8172	R	point 5 y coordinate (low byte)				
0x8173	R	point 5 y coordinate (high byte)				
0x8174	R	point 5 size (low byte)				
0x8175	R	point 5 size (high byte)				
0x8176	R	Reserved				
0x8177	R	Reserved				

FUNCTION MODE Working Mode

a) Normal Mode


When module is in Normal mode, touch scanning period is about $7ms \sim 10ms$ depending on the setting. The chip will automatically enter into Green mode if no touch for short time within 0~15s depending on setting and the step is 1s.

b) Green Mode

In Green mode, the touch scanning cycle is fixed as 40ms. It will automatically enter into Normal mode if any touch is detected.

c) Sleep Mode

For a lower consumption, Master can ask module to enter Sleep mode through I2C command (before the command, please drive low to INT pin). Drive high to the INT pin of module 2~5ms will make module return back to normal mode.

Pulse Calling

Module will inform master to read coordinate information only when touch event happen, in order to lighten the burden of master CPU. The master CPU will set trigger mode by register "INT". "0" means rising edge trigger, in this mode module will output a rising edge hopping in INT, to inform CPU; "1" means falling edge trigger.

Sleep Mode

When the display is turned off or in any circumstance that operation of touch panel is not necessary, master can set module be in Sleep mode through I2C command. The master can wake up module by outputting high to INT pin & keeping 2-5ms.

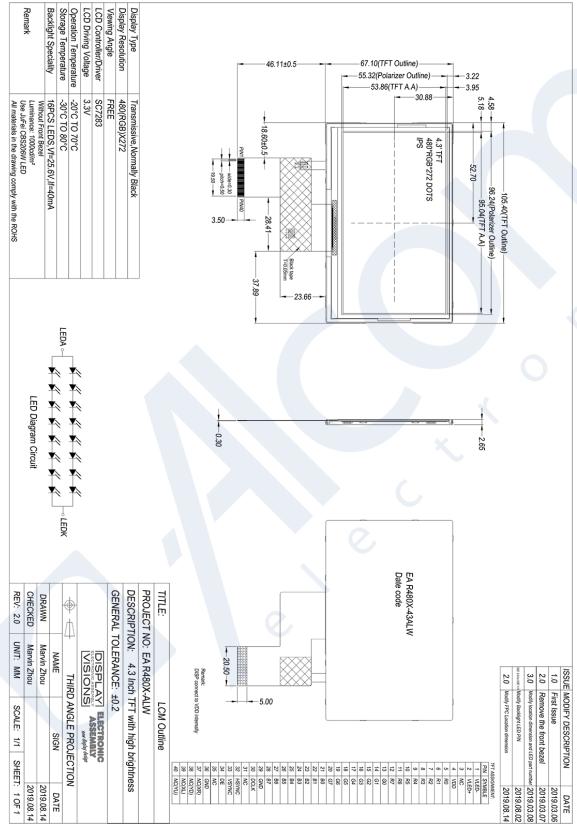
Frequency Hopping Function

This module has very strong anti-interference hardware, when the driver spectrum of module overlaid with spectrum of noise signal, it can be switch to another frequency by self-adaption frequency hopping mechanism, to avoid interference.

Automatic Calibration

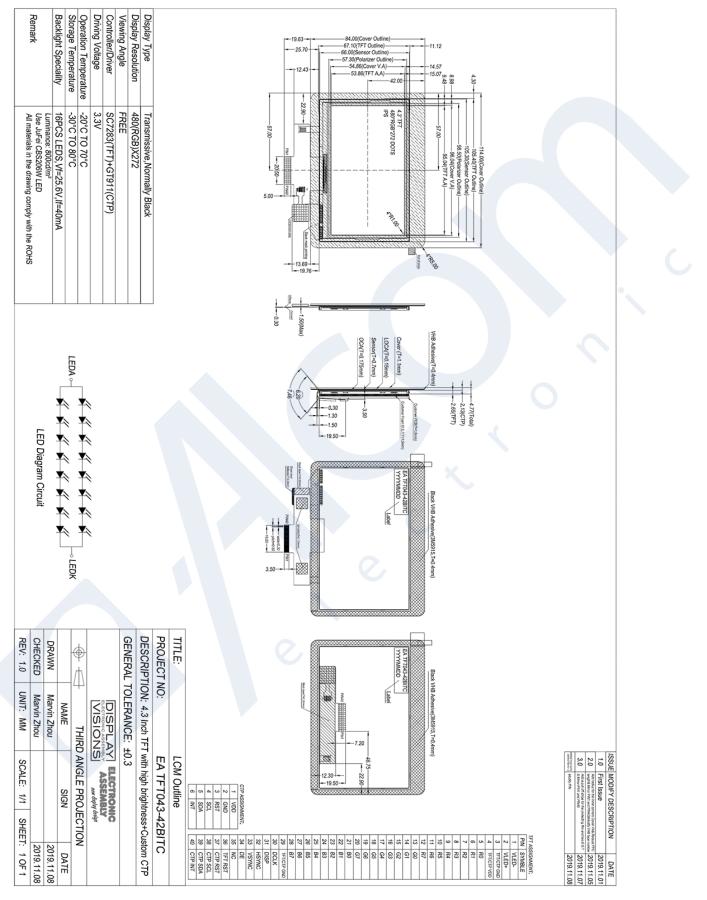
a) Initialization Calibration

Different temperature, humidity and physical structure will affect the sensor's baseline. According to environmental situation module will update the baseline automatically in initialized 200ms.


b) Automatic Temperature Drift

Slow change of temperature, humidity or dust and other environmental factors will also affect the sensor's baseline. module calculates and analyses historical data, and compare to the current data variation. Base on this, the baseline will be calibration automatically.

For more information, refer to the data sheet GT911: https://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/GT911%20Datasheet English%2020150625 Rev10.pdf.



9.Outline Dimension 9.1 EA R480X-43ALW

9.2 EA TFT043-42BITC with Touchpanel

10. Reliability and Inspection Standard

No.	Test Iten	n	Test Conditions	Remark
1	High Tomporature	Storage	80°C, 120Hr	Note
	High Temperature	Operation	70°C, 120Hr	Note
2		Storage	-30°C, 120Hr	Note
	Low Temperature	Operation	-20°C, 120Hr	
3	High Temperature Humidity	and High	40℃, 90%RH, 120Hr	Note
4	Thermal Cycling operation	-	-20C for 30min, 70c for 30 min. 100 cycles. Then test at room temperature after 1 hour	Note
5	Vibration Test(No	operation)	Frequency :10~55 HZ; Stroke :1.5 mm;Sweep:10HZ~55HZ~10HZ; 2hours for each direction of X, Y, Z(6 hours for total)	С _
6	Package Drop	Test	Height:60 cm,1 corner, 3 edges, 6 surfaces	
7	Electro Static Dis	scharge	\pm 2KV,Human Body Mode, 100pF/1500Ω	

Note:

1) Sample quantity for each test item is 5~10pcs.

2) Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

11. PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

- (1) The display panel is made of glass and polarizer. As glass is fragile, it tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents
 - Isopropyl alcohol
 - Ethyl alcohol
 - Do not scrub hard to avoid damaging the display surface.
- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.

- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- (9) Do not attempt to disassemble or process the LCD module.
- (10) NC terminal should be open. Do not connect anything.
- (11) If the logic circuit power is off, do not apply the input signals.
- (12) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.
 - Do not alter, modify or change the shape of the tab on the metal frame.
 - Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.

- Do not damage or modify the pattern writing on the printed circuit board.
- Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- Do not drop, bend or twist LCM.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the desicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped).

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.

-Terminal electrode sections.