

CBM-160X-UV

Ultraviolet Chip On Board LED

Table of Contents

Binning Structure
Ordering Information3
Typical Device Performance 4
Absolute Maximum
Ratings4
Optical & Electrical Characteristics 5
Typical Spectrum7
Radiation Pattern7
Thermal Resistance8
Mechanical Dimensions9
Shipping Tray Outline 10
Shipping Label 11
Precautions for Use12
Revision History 13

Features:

- Mosaic Array UV LED chipset with surface emitting area of 16 mm², 4:3 aspect ratio
- Latest UVX technology enables ultra-high power density operation up to 4 A/mm²
- Electrically Isolated, high thermal conductivity copper coreboard package
- Available in wide range of UVA wavelengths: 380 nm 410 nm
- Low-profile window for efficient coupling into small-etendue systems
- Environmentally friendly: REACH, RoHS and Halogen compliant
- Over 60 Watts of optical power at maximum rated drive conditions

Applications:

- 3D printing and Additive Manufacturing
- Machine Vision
- Maskless Lithography
- Curing
 - Inks
 - Coatings
 - Adhesives
- Medical and Scientific Instrumentation

PDS-003119 Rev 02 © 2023 Luminus Devices, Inc. - All Rights Reserved

1

Singel 3 | B-2550 Kontich | Belgium | Tel. +32 (0)3 458 30 33 | info@alcom.be | www.alcom.be Rivium 1e straat 52 | 2909 LE Capelle aan den Ijssel | The Netherlands | Tel. +31 (0)10 288 25 00 | info@alcom.nl | www.alcom

Binning Structure

CBM-160X-UV LEDs are specified for flux and peak wavelength at a drive current of 3 A with a 20 ms pulse at 25°C and placed into one of the following Power Bins and Wavelength Bins.

Flux Bins

Color	Flux Bin (FF)	Binning @ 3A, 20ms pulse, T _c = 25°C ³		
Color	Flux bill (FF)	Minimum Flux (W)	Maximum Flux (W)	
	I	9.1	10.0	
	J	10.0	11.0	
	К	11.0	12.1	
	L	12.1	13.3	
	М	13.3	14.6	
UV	Ν	14.6	16.1	
UV	Р	16.1	17.7	
	Q	17.7	19.5	
	R	19.5	21.0	
	S	21.0	22.5	
	Т	22.5	24.0	
	U	24.0	25.1	

Peak Wavelength Bins

Color		Wavelength Bin (WWW)		Binning @ 3A, 20ms pulse, $T_c = 25^{\circ}C^3$		
				Minimum Wavelength (nm)	Maximum Wavelength (nm)	
UV		365	365	370		
		370	370	375		
			380	380	385	
	00		385	385	390	
			400	400	405	
			405	405	410	

Note 1: Luminus maintains a +/- 6% tolerance on flux measurements.

Note 2: Products are production tested then sorted and packed by bin.

Note 3: Ratings are based on operation at a constant temperature of $T_c = 25 \text{ °C}$.

Note 4: Luminus maintains a +/- 1nm tolerance on wavelength measurements.

Ordering Information

Product	Ordering Part Number	Description
CBM-160X-UV	CBM-160X-UV-Y32-FWWW-2#	CBM-160X-UV Mosaic Array chipset consisting of 12 UV chips, a thermistor, and a connector on a copper-core PCB.

Part Number Nomenclature

СВМ —	160X –	– UV	— Y32 -	— FWWW-2#
Product Family	Chip Area	Color	Package Configuration	Bin Kit
CBM: Copper-core PCB, Mosiac Array	160X:16 mm ²	UV: Ultraviolet	Y32: 32 mm x 32 mm See Mechanical Drawing section	See ordering part numbers table below for complete bin definition

Ordering Part Numbers

Mayalan ath Dan as	Radiometric Flux		Wavelen ath Dine	Oudering Deat Name Level 2	
Wavelength Range	Min. Flux Bin	Min. Flux (W)	Wavelength Bins	Ordering Part Number ^{1,2}	
380-390	Q	17.7	380, 385	CBM-160X-UV-Y32-Q380-22	
400-410	Q	17.7	400, 405	CBM-160X-UV-Y32-Q400-22	

Note 1: A Bin Kit represents a group of flux and wavelength bins that are shippable for a given ordering part number. Individual bins are not always orderable-contact Luminus for special requests.

Note 2: Flux Bin listed is minimum bin shipped - higher bins may be included at Luminus' discretion

Typical Device Performance ($T_c = 25^{\circ}C$)

Parameter	Symbol	Value		Unit
Peak Wavelength Range	λ	380-390	400-410	nm
Test Current for binning ³	I	3.0	3.0	А
Peak Wavelength Typ.	λ _ρ	385	405	nm
Forward Voltage	V _{F min}	12.4	12.8	V
	V _F	13.8	14.8	V
	V _{F max}	16.4	16.8	V
Radiometric Flux ⁴	$\Phi_{_{typ}}$	19.2	18.0	w 🗸
FWHM at 50% of Φ	Δλ _{1/2}	15	15	nm

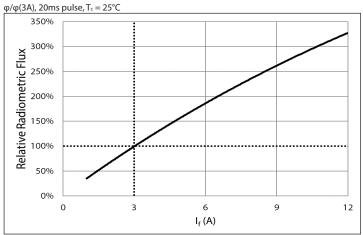
Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Absolute Minimum Current (CW or Pulsed) ⁵	l _{min}	0.6	A
Absolute Maximum Current (CW) ⁶ for 385-405 nm	I _{max}	12	A
Absolute Maximum Surge Current ⁶ (Frequency > 240 Hz, duty cycle =10%, t=1ms)	ls	18	A
Maximum Junction Temperature ⁶	T _{jmax}	125	°C
Storage Temperature Range	T _s	-40 to +100	°C
Emitting Area ⁷	A _e	16.6	mm²
Emitting Area Dimensions ⁷		3.51 x 4.72	mm × mm
ESD Sensitivity (HBM)	Vb	8	kV

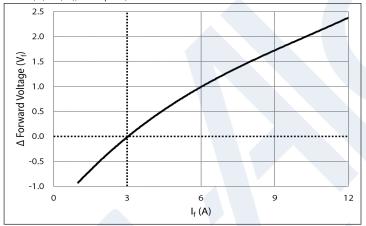
Note 3: Unless otherwise noted, values listed are typical. Devices are production tested and specified at 3 A with a 20 ms pulse at 25°C.

Note 4: Typical radiometric flux is for reference only. Minimum flux values are guaranteed based on the bin kit ordered. For product roadmap and future performance of devices, contact Luminus.

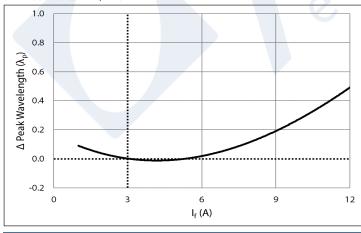
Note 5: Special design considerations must be observed for operation under 1 A. Please contact Luminus for further information.


Note 6: CBM-160X-UV LEDs are designed for operation to an absolute maximum current as specified above. Product lifetime data is specified at or below maximum drive current. Sustained operation beyond absolute maximum currents will result in a reduction of device life time. Actual device lifetimes will also depend on junction temperature and operation beyond maximum junction temperature is not recommended. Contact Luminus for lifetime derating curves and for further information. In pulsed operation, rise time from 10-90% of forward current should be longer than 0.5 µseconds.

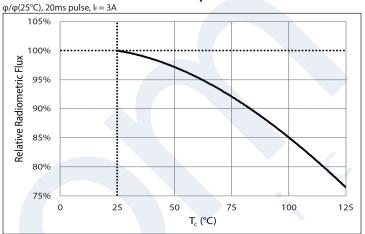
Note 7: Emitting Area is for reference only and subject to change without notice.


Optical & Electrical Characteristics - 385 nm

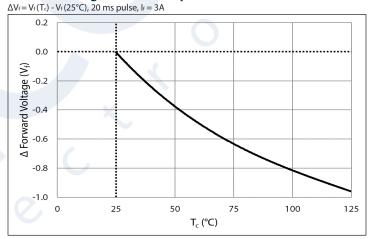
Relative Radiometric Flux vs. Forward Current


Forward Voltage Shift vs. Forward Current

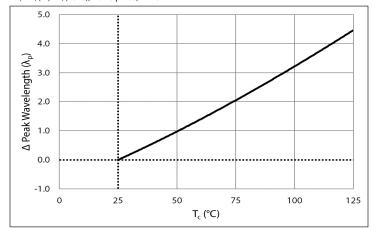
 $\Delta V_f = V_f(T_c) - V_f(3A)$, 20 ms pulse, $T_c = 25^{\circ}C$



Peak Wavelength Shift vs. Forward Current


 $\Delta \lambda_{\rm P} = \lambda_{\rm P}(I_{\rm F}) - \lambda_{\rm P}(3A)$, 20ms pulse, T_c = 25°C

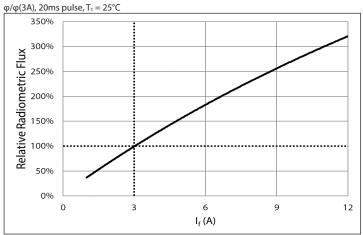
Relative Radiometric Flux vs. Temperature



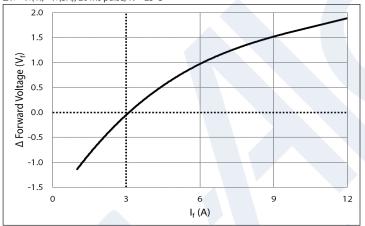
Forward Voltage Shift vs. Temperature

Peak Wavelength Shift vs. Temperature

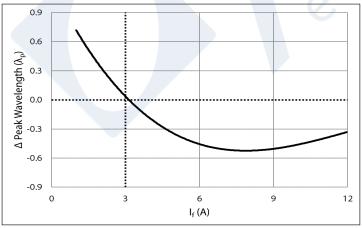
 $\Delta \lambda_p = \lambda_p(T_c) - \lambda_p(25^{\circ}C)$, 20ms pulse, $I_f = 3A$



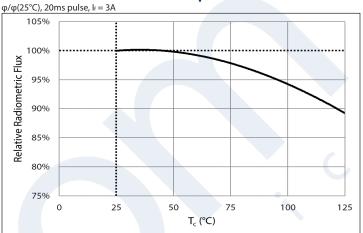
Luminus Devices, Inc. • T 408.708.7000 • www.luminus.com 1145 Sonora Court, Sunnyvale, CA 94086 USA


Optical & Electrical Characteristics - 405 nm

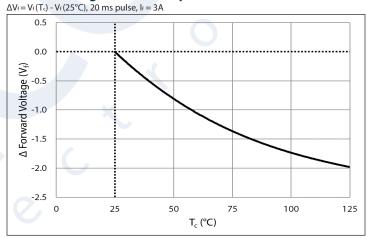
Relative Radiometric Flux vs. Forward Current


Forward Voltage Shift vs. Forward Current

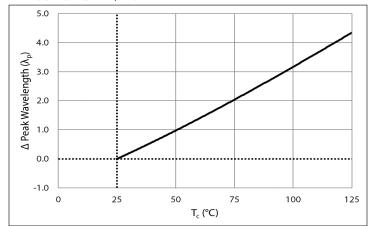
 $\Delta V_f = V_f(T_c) - V_f(3A)$, 20 ms pulse, $T_c = 25^{\circ}C$



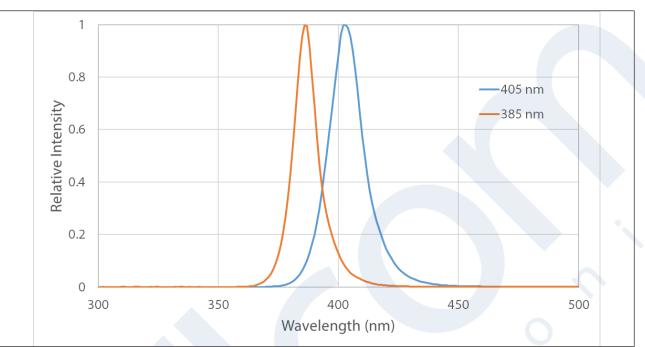
Peak Wavelength Shift vs. Forward Current


 $\Delta \lambda_{\rm P} = \lambda_{\rm P}(I_{\rm F}) - \lambda_{\rm P}(3A)$, 20ms pulse, T_c = 25°C

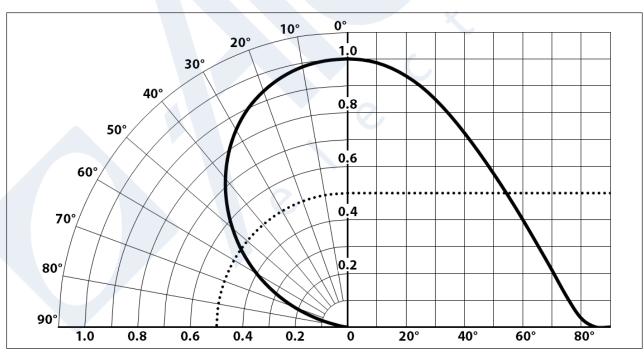
Relative Radiometric Flux vs. Temperature



Forward Voltage Shift vs. Temperature

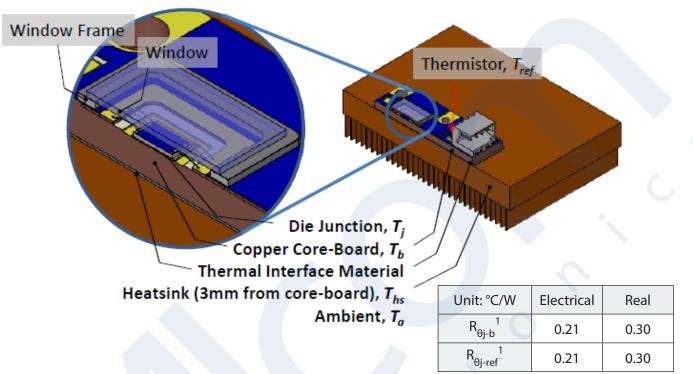

Peak Wavelength Shift vs. Temperature

 $\Delta \lambda_p = \lambda_p(T_c) - \lambda_p(25^{\circ}C)$, 20ms pulse, $I_f = 3A$


Luminus Devices, Inc. • T 408.708.7000 • www.luminus.com 1145 Sonora Court, Sunnyvale, CA 94086 USA

Typical Spectrum⁸

Radiation Pattern⁹



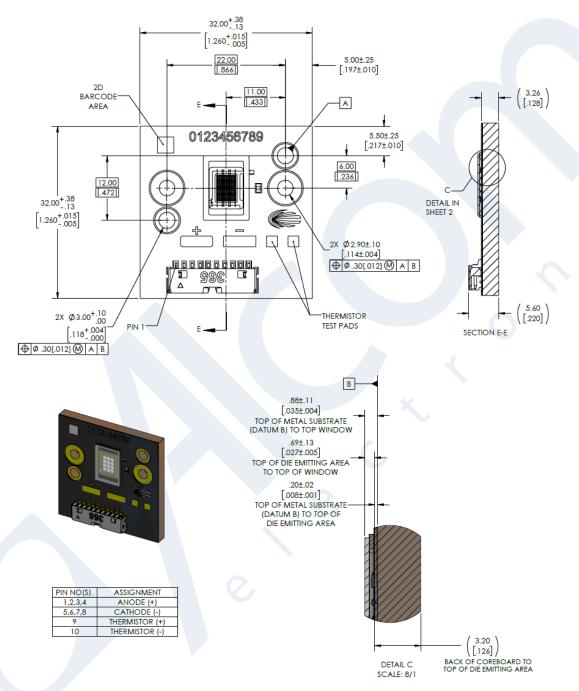
Note 8: Typical spectrum at 3 A drive current.

Note 9: Detailed information on radiation pattern including ray trace files can be found at: http://www.luminus.com

Thermal Resistance

Note 1: Drive current 9A.

Thermistor Information

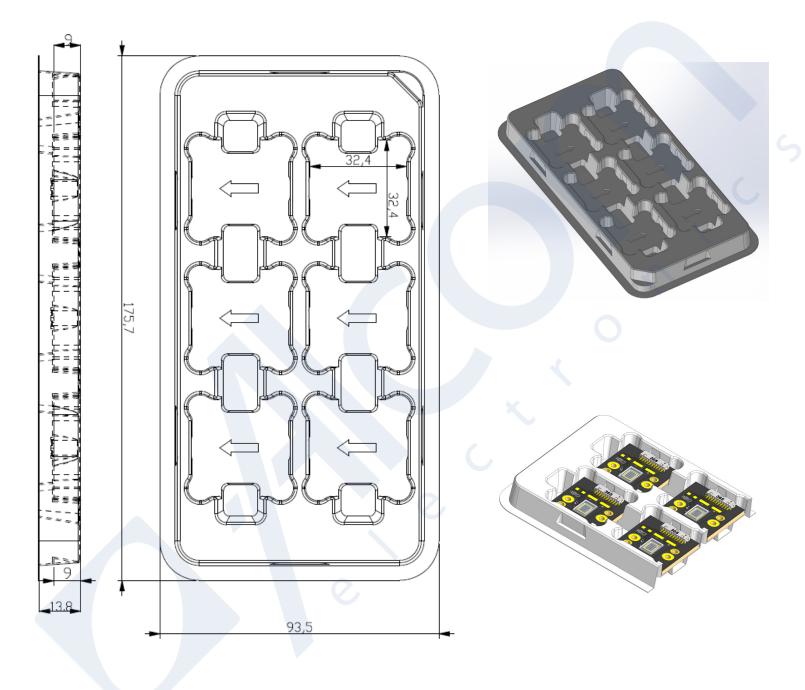


For more about calculating thermistor temperature, please see <u>https://luminusdevices.zendesk.com/hc/en-us/articles/4412023747341-How-do-l-determine-the-temperature-from-Luminus-on-board-Thermistor-</u>

Important note: The CBM-160X-UV copper PCB is electrically isolated and not active.

Mechanical Dimensions and Electrical Pin Out

Connector: Tarng Yu, P/N TU1503WGR-10SD-GO-NL-A GCT P/N WTB08-021S-F


Recommended Female: Tarng Yu, P/N HTQ001002-190429-01

Note 1: The coreboards and windows of LEDs may have minor cosmetic differences, for e.g. slightly different hues, because of different supply sources. These differences are only cosmetic and do not affect form, fit or function of the LED.

Note2: Back of the coreboard is electrically neutral.

Shipping Tray Outline

Shipping Label

€ ∋LUMINUS	RoHS Compliant
MPN Number	Bin Title
CPN (product description)	
Box ID: HJ-Date Number	QTY:

Label Fields:

- CPN: Customer ordering part number
- MPN: Luminus part number
- Bin Title: Bin as defined on page 3
- QTY: Quantity of devices in pack
- Box ID: Package identification

Packing Configuration:

- Maximum stack of 5 trays per pack with 6 devices per tray
- Partial pack or tray may be shipped
- Each pack is enclosed in anti-static bag
- Shipping label is placed on top of each pack

11 PDS-003119 Rev 02 © 2023 Luminus Devices, Inc. - All Rights Reserved

Precautions for storage, handling and use of UV LEDs

1. UV Light

CBM-160X-UV LEDs are short wavelength, UV LEDs. During operation, the LED emits high intensity UVA radiation, which is harmful to skin and eyes, and may cause cancer. Avoid exposure to UV light when LED is operational.

2. Static Electricity (ESD)

While CBM-160X LEDs are robust in nature, they are particularly sensitive to ESD (Electrostatic Discharge). Static electricity and surge voltages seriously damage UV LEDs and can result in complete failure of the device. Anti-electrostatic wristband or gloves are recommended when handling the LEDs. All devices, equipment and machinery must be properly grounded and precautions must be taken against surge voltages.

Reference: APN-002815 Electrical Stress Damage to LEDs and How to Prevent It

3. Operating Conditions

In order to ensure the correct functioning of these LEDs, compliance to maximum allowed specifications is important. UV LEDs are particularly sensitive to drive currents that exceed the max operating specifications and may be damaged by such drive currents. The use of current regulated drive circuits is strongly recommended when operating these devices. Customers should also provide adequate thermal management to ensure LEDs do not exceed maximum recommended temperatures. Operating LEDs at temperatures in excess of specification will result in damage and possibly complete failure of the device.

Revision History

Rev	Date	Description of Change	
Α	09/21/2020	Initial Release of Preliminary Datasheet	
В	02/24/2021	Modified ordering part numbers for pre-release parts	
С	06/30/2021	Updated Print - substrate thickness	
D	10/22/2021	Added missing print dimensions	
01	02/01/2023	Initial Release	
02	07/17/2023	Editorial changes	

ACAUTION UV radiation hazard.

Use only with shielding in place. Protect eyes & skin from exposure to UV light.

The products, their specifications and other information appearing in this document are subject to change by Luminus Devices without notice. Luminus Devices assumes no liability for errors that may appear in this document, and no liability otherwise arising from the application or use of the product or information contained herein. None of the information provided herein should be considered to be a representation of the fitness or suitability of the product for any particular application or as any other form of warranty. Luminus Devices' product warranties are limited to only such warranties as accompany a purchase contract or purchase order for such products. Nothing herein is to be construed as constituting an additional warranty. No information contained in this publication may be considered as a waiver by Luminus Devices of any intellectual property rights that Luminus Devices may have in such information.

This product is protected by U.S. Patents 6,831,302; 7,074,631; 7,083,993; 7,084,434; 7,098,589; 7,105,861; 7,138,666; 7,166,870; 7,166,871; 7,170,100; 7,196,354; 7,211,831; 7,262,550; 7,274,043; 7,301,271; 7,341,880; 7,344,903; 7,345,416; 7,348,603; 7,388,233; 7,391,059 Patents Pending in the U.S. and other countries.