

Features

- Highly integrated analog circuits for demodulation and decoding
- Operating voltage range: 2.3V~5.5V
- Ultra low power consumption, typical communication distance up to 10cm depending on antenna size
- Supports ISO/IEC 14443 TypeA/TypeB protocols
- Supports ISO 14443 A, B high transfer speed of 106kbit/s, 212kbit/s, 424kbit/s and 848kbit/s
- Supports MFIN/MFOUT
- · Supported host interfaces
 - + SPI interface up to 10Mbit/s
 - I²C interface up to 400kbit/s
 - + Serial UART up to 1228.8kbit/s
- FIFO buffer for 64-byte transmission and reception
- · Flexible interrupt modes
- Programmable timer
- 3 power saving modes: hardware power-down, software power-down and transmitter power-down
- Internal temperature sensor automatically stops RF transmission in high chip temperature situations
- Multiple independent power supplies to avoid mutual interference between blocks and improve the operation stability
- CRC coprocessor to implement CRC and parity function
- Internal oscillator for connection to a 27.12MHz quartz crystal
- Programmable I/O pins
- Supports Low Power Card Detection (LPCD) function
- Package type: 32-pin QFN

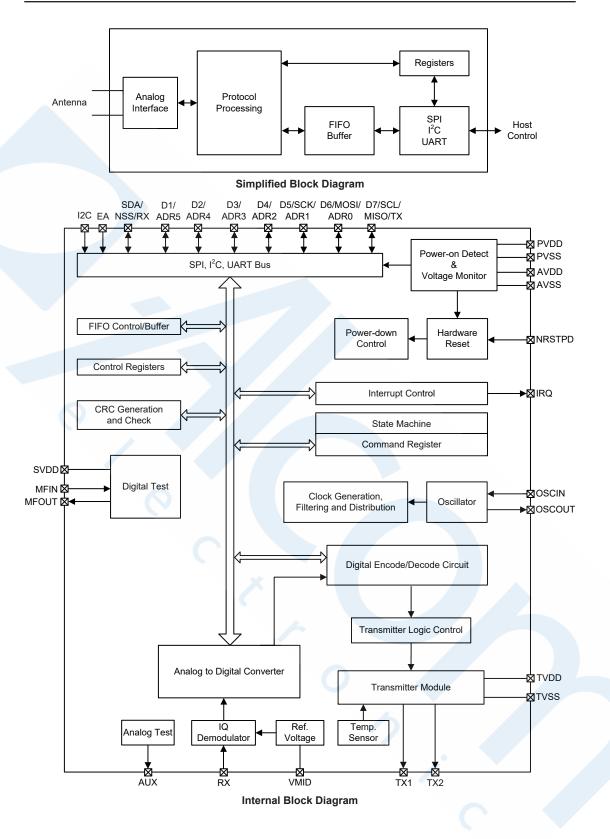
Applications

- · Security access control / locks
- Toys
- Handheld NFC readers
- · Contactless payment systems

General Description

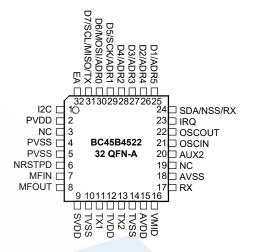
The BC45B4522 is a highly integrated reader IC for use in contactless communication at 13.56MHz. This NFC reader supports ISO/IEC 14443 A, ISO/IEC 14443B and Crypto_M modes. The internal transmitter is able to drive the reader antenna to communicate with ISO/IEC 14443 A, ISO/IEC1444B, Crypto_M cards and transponders without requiring additional active circuitry. The receiver block provides a robust and efficient implementation to demodulate and decode signals from ISO/IEC 14443 A, ISO/IEC1444B, Crypto_M cards and transponders. The digital block manages the complete ISO/IEC 14443 A framing detection and error detection including parity and CRC check.

The BC45B4522 supports all protocol layers for ISO/ IEC 14443 A and ISO/IEC 14443 B communications. It supports contactless communication with higher baud rates and the bidirectional transmission speeds is up to 848kbit/s. The device provides several host interfaces including the Serial Peripheral Interface(SPI), serial UART and I²C bus.


Block Diagram

The analog interface is used to handle the modulation and demodulation of analog signals, and then cooperate with the host to manage the communication protocol requirements. The FIFO buffer ensures fast and convenient data transfer between the host and the contactless interface. Various host interfaces are provided to meet different customer requirements.

Singel 3 | B-2550 Kontich | Belgium | Tel. +32 (0)3 458 30 33 info@alcom.be | www.alcom.be Rivium 1e straat 52 | 2909 LE Capelle aan den IJssel | The Netherlands Tel. +31 (0)10 288 25 00 | info@alcom.nl | www.alcom.nl



October 13, 2023

Pin Assignment

Pin Description

Pin No.	Pin Name	Pin Type	Description
1	I2C	1	I ² C interface enable
2	PVDD	PWR	Pin and digital positive power supply
3	NC	—	Not connected
4	PVSS	G	Pin and digital negative power supply, ground
5	PVSS	G	Pin and digital negative power supply, ground
6	NRSTPD	I	Reset or power-down pin, low active
7	MFIN	I	Test signal input
8	MFOUT	0	Test signal output
9	SVDD	PWR	MFIN and MFOUT positive power supply
10	TVSS	G	Transmitter negative power supply, ground
11	TX1	0	Transmitter antenna pin 1
12	TVDD	PWR	Transmitter positive power supply
13	TX2	0	Transmitter antenna pin 2
14	TVSS	Transmitter negative power supply, ground	
15	AVDD	PWR	Analog positive power supply
16	VMID	PWR	Internal reference voltage
17	RX	I	Receiver antenna pin
18	AVSS	G	Analog negative power supply, ground
19	NC	_	Not connected
20	AUX2	0	Test pin
21	OSCIN	I	27.12MHz crystal input
22	OSCOUT	0	27.12MHz crystal output
23	IRQ	0	Interrupt request output
24	SDA/NSS/RX	I/O	I ² C SDA; SPI NSS; UART RX
25	D1/ADR5	I/O	Programmable I/O; I ² C address bit 5
26	D2/ADR4	I/O	Programmable I/O; I ² C address bit 4
27	D3/ADR3	I/O	Programmable I/O; I ² C address bit 3
28	D4/ADR2	I/O	Programmable I/O; I ² C address bit 2
29	D5/SCK/ADR1	I/O	Programmable I/O; SPI SCK; I ² C address bit 1
30	D6/MOSI/ADR0	I/O	Programmable I/O; SPI MOSI; I ² C address bit 0

ĺ	Pin No.	Pin Name	Pin Type	Description		
	31	D7/SCL/MISO/TX	I/O	Programmable I/O; I ² C SCL; SPI MISO; UART TX		
	32	EA	I	I ² C address coding control		

Legend: 1. Pin Type: I=Input, O=Output, I/O=Input/Output, PWR=Power, G=Ground
2. MFIN and MFOUT are digital test pins. Leave the pins floating in product design.

Electrical Characteristices

Absolute Maximum Rating

Symbol	Parameter	Conditions	Min.	Max.	Unit
AV _{DD}	Analog Power Supply	_	-0.5	+6.0	V
PV _{DD}	PVDD Power Supply	—	-0.5	+6.0	V
TVDD	TVDD Power Supply	_	-0.5	+6.0	V
SVDD	SVDD Power Supply	_	-0.5	+6.0	V

Operating Condition

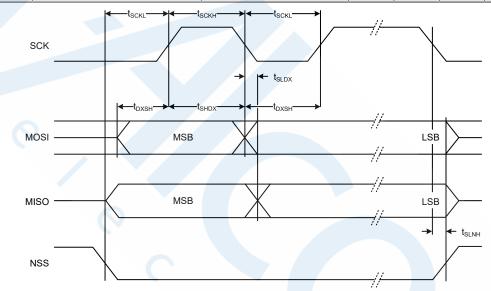
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
AVDD	Analog Power Supply		2.3	3.3	5.5	V
TV _{DD}	Transmitter Power Supply	PVss=AVss=TVss=0V,	2.3	3.3	5.5	V
SVDD	MFIN and MFOUT Pin Power Supply	PV _{DD} SV _{DD} SV _{DD} SV _{DD}	2.3	3.3	5.5	V
PVDD	Pin and Digital Power Supply		2.0	3.3	5.5	V
Та	Operating Temperature	_	-40		+105	°C

Note: Recommended power supply condition: $PV_{DD} \leq SV_{DD} \leq AV_{DD} \leq TV_{DD}$. The performance of other power supply conditions are not guaranteed.

Power Consumption Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
3.3V Cha	aracteristics					
I _{HPD}	Hardware Power-down Current	AV _{DD} =TV _{DD} =PV _{DD} =SV _{DD} =3.3V, NRSTPD=LOW	-	0.02	1.00	μA
I _{SPD}	Software Power-down Current	AV _{DD} =TV _{DD} =PV _{DD} =SV _{DD} =3.3V, RF level detector on	-	0.6	5.0	μA
IDLE	Idle Current	AVDD=TVDD=PVDD=SVDD=3.3V		3.52	5.00	mA
I _{RX}	Receving Current	AVDD=TVDD=PVDD=SVDD=3.3V	—	6.5	10.0	mA
PVDD	Pin and Digital Supply Current	PV _{DD} =3.3V	-	2.97	4.00	mA
	Angler Sumply Comment	AV _{DD} =3.3V, RcvOff=0	-	2.98	6.00	mA
AVDD	Analog Supply Current	AV _{DD} =3.3V, RcvOff=1	_	2.95	6.00	mA
I _{TVDD}	Transmitter Supply Current	Continuous transmit carrier, TV_{DD} =3.3V	-	60	160	mA
	Low Power Card Detection Current	$AV_{DD}=TV_{DD}=PV_{DD}=SV_{DD}=3.3V$, Average current consumption in LPCD mode @ WUPeriod=500ms & detect wave time=5.9µs	_	1.5	10.0	μΑ
V _{Ripple}	Power Supply Ripple Rejection	_	/-	_	400	mV
V _{Noise}	Power Supply Random Noise Rejection	_	_	_	1600	mV
Tosu	Oscillator Start Up Time		—	300	—	μs

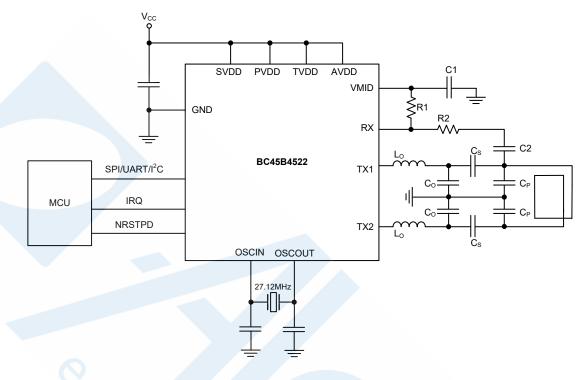
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
5V Char	acteristics					
I _{HPD}	Hardware Power-down Current	$AV_{DD}=TV_{DD}=PV_{DD}=SV_{DD}=5V,$ NRSTPD=LOW	_	0.02	1.00	μA
ISPD	Software Power-down Current	AV _{DD} =TV _{DD} =PV _{DD} =SV _{DD} =5V, RF level detector on	_	0.8	5.0	μA
IIDLE	Idle Current	AV _{DD} =TV _{DD} =PV _{DD} =SV _{DD} =5V	_	3.52	5.00	mA
Irx	Receving Current	AV _{DD} =TV _{DD} =PV _{DD} =SV _{DD} =5V	—	6.55	10.00	mA
IPVDD	Pin and Digital Supply Current	PV _{DD} =5V	_	3.2	5.0	mA
	Angler Current Current	AV _{DD} =5V, RcvOff=0	_	3.1	6.0	mA
IAVDD	Analog Supply Current	AV _{DD} =5V, RcvOff=1	_	3.07	6.00	mA
Itvdd	Transmitter Supply Current	Continuous transmit carrier, TV_{DD} =5V		90	230	mA
V _{Ripple}	Power Supply Ripple Rejection	_	_	_	300	mV
V _{Noise}	Power Supply Random Noise Rejection	_	_	_	1600	mV
Tosu	Oscillator Start Up Time	_	_	300	—	μs


I/O Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Pins I2C	, EA, NRSTPD, MFIN, SDA/NSS/	RX				
I _{LEAK}	Input Leakage Current	—	-1	_	1	μA
VIH	High Level Input Voltage	—	0.7PV _{DD}	_	—	V
VIL	Low Level Input Voltage	—	—	—	0.3PV _{DD}	V
Pins D1/	ADR5, D2/ADR4, D3/ADR3, D4/A	DR2, D5/SCK/ADR1, D6/MOSI/ADR	R0, D7/SC	L/MISO/	TX, MFOU	T, IRQ
		Connected to VDD when in operation/idle state	-1	_	1	μA
	Input Leakage Current	Connected to GND when in operation/idle state	_	13.5	_	μA
I _{LEAK}		Connected to 1.5V when in operation/idle state	_	13	_	μA
		Left floating when in operation/idle state	_	0	_	μA
VIH	High Level Input Voltage	—	0.7PV _{DD}	—		V
VIL	Low Level Input Voltage	—		—	0.3PV _{DD}	V
V _{он}	High Level Output Voltage	× –	PV _{DD} -0.4	—	PVDD	V
V _{OL}	Low Level Output Voltage		PVss	-	PV _{ss} +0.4	V
Іон	High Level Output Current	PV _{DD} =3V	_	—	5	mA
I _{OL}	Low Level Output Current	PV _{DD} =3V	_	_	14	mA
Pins OS	CIN, OSCOUT Connection Requ	irements				
£	Crystal Frequency	-0	-	27.12	—	MHz
f _{xtal}	Frequency Tolerance		—	±10	±20	ppm
ESR	Equivalent Series Resistance	_	_	_	100	Ω
CL	Load Capacitance		_	10	—	pF
P _{xtal}	Crystal Power Dissipation		_	50	100	mW

SPI Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tsckl	Low Pulse Width	Line SCK	50	_	_	ns
t _{scкн}	High Pulse Width	Line SCK	50	_	_	ns
t _{SHDX}	Time Interval from SCK High to Data Input Hold	SCK to changing MOSI	25	_		ns
t _{DXSH}	Time Interval from Data Input to SCK High Set-up	Changing MOSI to SCK	25	_		ns
t _{sldx}	Time Interval from SCK Low to Data Output Hold	SCK to changing MISO	_	_	25	ns
t _{slnh}	Time Interval from SCK Low to NSS High	_	25			ns
t _{NHNL}	NSS High Time	Before communication	50	_	_	ns
t _{DOD}	Data Out Delay	_	_	20	_	ns
t _{DOHZ}	Time Interval from Data Out to High Impedance	-	_	20		ns


SPI Timing Diagram

Note: 1. The NSS signal must be low to be able to send several bytes in one data stream.

2. To send more than one data stream, the NSS line must be set high between data streams.

Typical Application Circuit

Communication Interfaces

Overview

The BC45B4523 supports the SPI, I²C and serial UART interfaces. After reset , the device identifies the current host interface type automatically by checking the logic level on the pins. The following table lists the different connection configurations.

Pin		Interfae Type	
PIII	UART	SPI	l ² C-bus
SDA	RX	NSS	SDA
I2C	0	0	1
EA	0	1	EA
D7	ТХ	MISO	SCL
D6	_	MOSI	ADR0
D5	—	SCK	ADR1
D4	—	G	ADR2
D3	—		ADR3
D2	_	—	ADR4
D1			ADR5

SPI Interface

The contactless chip acts as a slave during SPI communication and uses an SPI clock signal (SCK) generated by the host. The interface can manage data speeds up to 10Mbit/s and is inaccordance with the SPI standard.

Reading data from the device using the SPI interface requires to use the byte order shown in the following table. It is possible to read out up to n data bytes.

Pin	Byte 0	Byte 1	Byte 2	 Byte n	Byte n+1
MOSI	Address 0	Address 1	Address 2	 Address n	00
MISO	Х	Data 0	Data 1	 Data n-1	Data n

MISO and MOSI Byte Order – Read Data

Note: 1. The first sent byte defines both mode and address.

2. X: don't care.

3. The MSB must be sent first.

Writing data to the device using the SPI interface requires to use the byte order shown in the following table. It is possible to write up to n data bytes.

Pin	Byte 0	te 0 Byte 1 Byte 2		Byte n	Byte n+1	
MOSI	Address 0	Data 0	Data 1		Data n-1	Data n
MISO	Х	Х	Х		Х	Х

MISO and MOSI Byte Order – Write Data

Note: 1. The first sent byte defines both mode and address.

- 2. X: don't care.
- 3. The MSB must be sent first.

The address byte must meet the following format, as shown in the table below.

- The MSB of the first byte defines the mode. To read data from the device, the MSB must be set to logic 1. To write data to the device, the MSB must be set to logic 0.
- Bit[6:1] defines the address.
- The LSB must be set to logic 0.

Address (MOSI)	Bit7 (MSB)	Bit 6	Bit 5	Bit4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Byte 0	1 or 0	Address	Address	Address	Address	Address	Address	0

UART Interface

The UART default transfer speed is 9.6kbit/s. To modify the transfer speed, the host controller must write a new value to the SerialSpeed register, where the BR_T0[2:0] and BR_T1[4:0] bits define the factors for setting the transfer speed. The host controller needs to first configure the register using a data rate of 9.6kbit/s, and then adjusts its data rate corresponding to the new register value.

The BR_T0[2:0] and BR_T1[4:0] settings are described below.

BR_Tn	Bit 0	Bit 1	Bit 2	Bit 3	Bit4	Bit 5	Bit6	Bit 7
BR_T0 factor	1	1	2	4	8	16	32	64
BR_T1 range	1 to 32	33 to 64						

BR_T0 and BR_T1 Settings

Examples of different transfer speeds and the relevant register settings are given in the following table.

Transfer Speed (kbit/s)	7.2	9.6	14.4	19.2	38.4	57.6	115.2	128	230.4	460.8	921.6	1228.8
SerialSpeed register value	FAh	EBh	DAh	CBh	ABh	9Ah	7Ah	74h	5Ah	3Ah	1Ch	15h
Transfer speed accuracy	-0.25	0.32	-0.25	0.32	0.32	-0.25	-0.25	-0.06	-0.25	-0.25	1.45	0.32

Selectable UART Transfer Speeds

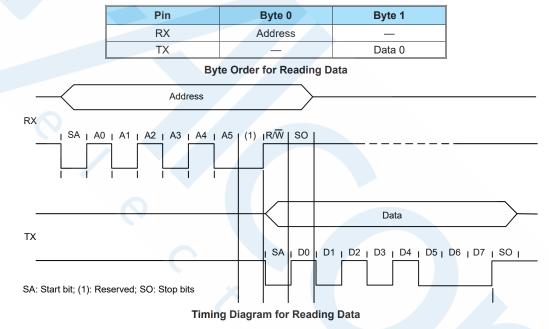
Note: Transfer speeds exceeding 1228.8kbit/s are not supported.

The transfer speeds shown in the above table are calculated according to the following equations.

• If BR_T0[2:0]=0

```
Transfer Speed = (27.12 \times 10^6) \div (BR T0+1)
```

• If BR_T0[2:0]>0


Transfer Speed = $(27.12 \times 10^6) \div [(BR T1+33) \div 2^{(BR_T0-1)}]$

The UART frame format is given in this table. The LSB of the data and address bytes must be sent first. No parity bit is used during transmission.

Bit	Length	Value
Start	1-bit	0
Data	8-bit	data
Stop	1-bit	1

UART Frame Format

To read out data using the UART interface, the procedure shown in the following table must be used. The first sent byte defines both mode and address.

To write data using the UART interface, the procedure shown in the following table must be used. The first sent byte defines both mode and address.

Pin	Byte 0	Byte 1
RX	Address 0	Data 0
TX	_	Address 0

Byte Order for Writing Data

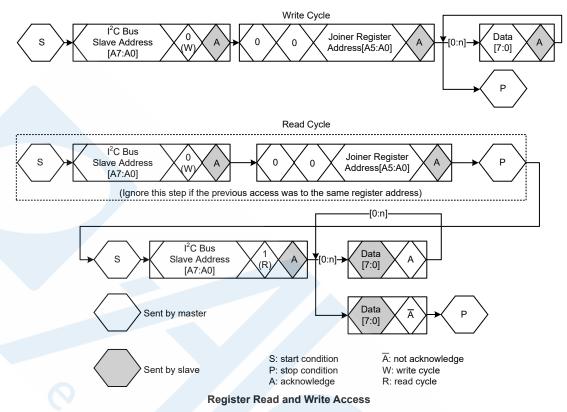
The address byte must meet the following format, as shown in the table below.

- The MSB of the first byte defines the mode.
- MSB=0 for write mode
- MSB=1 for read mode
- Bit6 is reserved.
- Bit[5:0] defines the address.

Bit7 (MSB)	Bit 6 Bit 5		Bit4 Bit 3		Bit 2	Bit 1	Bit 0 (LSB)
1 or 0	Reserved	Address	Address	Address	Address	Address	Address

I²C Interface

The contactless chip acts as a slave during I^2C communication and the implemented interface is inaccordance with the I^2C standard. The data transfer speed is up to 400kbit/s.


To write data from the host controller using the l²C bus, the following procedure and format must be followed:

- The first byte indicates the device address in accordance with the I²C bus standard.
- The second byte indicates the register address, followed by up to n data bytes.
- The Read/Write bit is 0.

To read data from the contactless chip using the I²C bus, the following procedure and format must be followed:

- The first byte indicates the device address in accordance with the I²C bus standard.
- The second byte indicates the register address. No data bytes are added.
- The Read/Write bit is 0.
- After the write access, read access can be started. The host sends the device address. In response, the contraceless chip sends the content of the accessed register to the host.
- The Read/Write bit is 1.

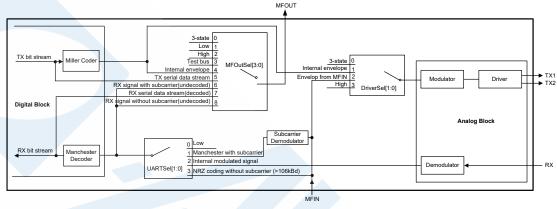
The address byte must meet the following format:

- 7-bit address setting.
 - If pin EA is set to 0, the higher 4 address bits are fixed at 0101b and the lower 3 bits (ADR0, ADR1, ADR2) can be freely configured by the user.
 - If pin EA is set to 1, ADR0 to ADR5 can be completely specified on the external pins by the user. ADR6 is always set to logic 0.
- The LSB defines the mode.
 - LSB=0, write data to the device.
 - LSB=1, read data from the device.

MFIN and MFOUT Interface

The BC45B4522 is divided into a digital circuit block and an analog circuit block. The digital block contains the state machine, encoder and decoder logic circuitry, etc. The analog block contains the modulator and antenna drivers, receiver and amplifiers. The interface between these two blocks can be configured so that the interfacing signals can be routed to the MFIN and MFOUT pins. This configuration is implemented using the MFOutSel[3:0] and DriverSel[1:0] bits in the TxSel register and the UARTSel[1:0] bits in the RxSel register.

This topology allows some parts of the analog block to be connected to the digital block of another device.


The MFOutSel[3:0] bits in the TxSel register is used to measure ISO/IEC14443 A related signals. This is expecially important during the design and test phases as it enables checking of the transmitted and received data.

Pins MFOUT and MFIN can find important use in active antenna applications. An external active antenna circuit can be connected to the BC45B4522's digital block. The MFOutSel[3:0] bits must be configured to 0100b so that the internal Miller encoded signal can be sent to the MFOUT pin. The UARTSel[1:0] bits must be configured to 01b so that a Manchester signal with subcarrier is recived on the MFIN pin.

It is possible to connect a passive antenna to the TX1, TX2 and RX pins using an appropriate filter and matching circuitry, and simultaneously an active antenna to the MFIN and MFOUT pins. In this circuit configuration, two RF circuits can be driven by the same host processor.

Note that the MFIN and MFOUT pins have a dedicated power supply on pin SVDD with the ground on pin PVSS. When the MFIN pin is not used, it must be connected to either pin SVDD or pin PVSS. When the SVDD pin is not used, it must be connected to pin PVDD or any other power supply pin.

MFIN and MFOUT Signal Routing Diagram

Functional Description

CRC Coprocessor

The following CRC coprocessor parameters can be configured:

- The CRC preset value can be either 0000h, 6363h, A671h or FFFFh depending on the CRCPreset[1:0] setting in the Mode register.
- The CRC polynomial for the 16-bit CRC is $X^{16} + X^{12} + X^5 + 1$.
- The CRCResult_H and CRCResult_L registesrs indicate the CRC calculation result high byte and low byte respectively.
- The MSBFirst bit in the Mode register indicates that data will be loaded with the MSB first.

Parameter	Value
CRC register length	16-bit CRC
CRC algorithm	Algorithm according to ISO/IEC 14443 A and ITU-T
CRC preset value	0000h, 6363h, A671h or FFFFh depending on CRCPreset[1:0] setting in the Mode register

FIFO Buffer

The BC45B4522 contains an 8×64 FIFO buffer. It is used to cache the input and output data streams for communication between the host and the device internal state machine. It can manage up to 64 bytes of data streams without considering timing limitations.

Accessing the FIFO Buffer

The FIFO buffer input and output data bus is connected to the FIFOData register. Writing to the FIFOData register will store one byte in the FIFO buffer and increase the internal FIFO buffer write pointer by 1. Reading from the FIFOData register will read the data stored in the pointed FIFO buffer and decrease the FIFO buffer read pointer by 1. The distance between the FIFO buffer write and read pointers can be obtained by reading the FIFOLevel register.

When the host controller sends a command, the BC45B4522 can access the FIFO buffer according to the command while the command is in progress. The FIFO buffer can continue to be used for input and output only when it is valid. The host controller must ensure that there are no unintentional accesses to the FIFO buffer.

Controlling the FIFO Buffer

The FIFO buffer pointers can be reset by setting the FlushBuffer bit in the FIFOLevel register to logic 1. Consequently, the FIFOLevel[6:0] bits are all set to logic 0 and the BufferOvfl flag in the Error register is cleared to zero. In this situation, the stored bytes can no longer be accessible, allowing the FIFO buffer to store another 64 data bytes.

FIFO Buffer State Information

The host device can obtain the following FIFO buffer state information:

- The number of data bytes stored in the FIFO buffer: FIFOLevel[6:0] bits in the FIFOLevel register
- FIFO buffer almost full warning: HiAlert bit in the Status1 register
- FIFO buffer almost empty warning: LoAlert bit in the Status1 register
- FIFO buffer overflow warning: BufferOvfl bit in the Error register, which can be cleared only by setting the FlushBuffer bit in the FIFOLevel register

The BC45B4522 can generate an interrupt signal when any one of the following conditions occurs:

- The LoAlertIEn bit in the ComIEn register is set to logic 1, it actives the IRQ pin when the LoAlert bit in the Status1 register changes to logic 1.
- The HiAlertIEn bit in the ComIEn register is set to logic 1, it actives the IRQ pin when the HiAlert bit in the Status1 register changes to logic 1.
- If the WaterLevel[5:0] value set in the WaterLevel register is greater than or equal to the remaining space in the FIFO buffer, the HiAlert bit is set to logic 1:

HiAlert=1 if (64-FIFOLength)≤WaterLevel

• If the WaterLevel[5:0] value set in the WaterLevel register is greater than or equal to the used space in the FIFO buffer, the LoAlert bit is set to logic 1:

LoAlert=1 if FIFOLength≤WaterLevel

Interrupt Request System

The BC45B4522 indicates various interrupt events by setting the IRq bit in the Status1 register or by activing the IRQ pin. The signal on the IRQ pin can be used to interrupt the host to use its interrupt handling capabilities. This greatly improves the efficiency of host software execution.

Interrupt Source Overview

The following table lists the available interrupt flags, the corresoponding interrupt source and the trigger condition for their activation.

The TimerIRq interrupt flag in the ComIrq register being set high indicates an interrupt generated by the timer. When the timer decreases from 1 to 0, this flag will be set high.

The TxIRq flag in the ComIrq register being set high indicates that the transmitter sending has finished. When the state changes from sending data to sending the end of the frame, the transmitter will automatically set the corresponding interrupt flag high. The CRC coprocessor will set the CRCIRq flag high in the DivIrq register after processing all the data in the FIFO buffer which is indicated by the CRCReady bit.

The RxIRq flag in the ComIrq register being set high indicates that the end of data reception has been detected.

The IdleIRq flag in the ComIrq register will be set high if a command execution has finished and the Command[3:0] field in the Command register has changed to the Idle state.

When the HiAlert bit is set to 1 and the HiAlertIRq flag in the ComIrq register is set to 1, it indicates that the remaining space in the FIFO buffer has reached the level indicated by the WaterLevel[5:0] bits. When the LoAlert bit is set to 1 and the LoAlertIRq flag in the ComIrq register is set to 1, it indicates that the used space in the FIFO buffer has reached the level indicated by the WaterLevel[5:0] bits.

The ErrIRq flag in the ComIrq register being set high indicates that an error has been detected during the contractless UART transmission and reception. This is indicated when any bit in the Error register is set to logic 1.

The TagDetIRq flag in the DivIrq register being set high indicates that in the LPCD mode an external contractless card has been detected.

Intrrupt Flag	Interrupt Source	Trigger Action
TimerIRq	Timer	The timer counts from 1 to 0
TxIRq	Transmitter	A data stream transmitting ends
CRCIRq	CRC coprocessor	All data in the FIFO buffer has been processed
RxIRq	Receiver	A data stream receiving ends
IdleIRq	Comlrq register	Command execution ends
HiAlertIRq	FIFO buffer	FIFO buffer is almost full
LoAlertIRq	FIFO buffer	FIFO buffer is almost empty
ErrlRq	Contractless UART	An error is detected
TagDetIRq	LPCD trigger	In the LPCD mode, a card enters the atenna effective range

Timer Unit

HOLTEK

The BC45B4522 has a timer unit which can be used by the external host to manage timing tasks. The timer unit can be used in one of the following timer/counter configurations:

- Time-out counter
- Watchdog counter
- Stopwatch
- Programmable one-shot trigger
- Periodic trigger

The timer unit can be used to measure the time interval between two events or to indicate the occurrence of a specified event after a certain period of time. The timer can be triggered by events explained in the following paragraphs. The timer unit does not affect any internal events, for example, a timer time-out event during data reception does not affect the automatic processing of this process. In addition, several timer-related bits can be used to generate an interrupt.

The timer has an input clock of 13.56MHz, which is obtained by dividing the frequency of a 27.12MHz quartz crystal oscillator. The timer consists of two stages: prescaler and counter.

The prescaler (TPrescaler) is a 12-bit counter, which is set using the TPrescaler_Hi[3:0] bits in the TMode register and the TPrescaler_Lo[7:0] bits in the TPrescaler register. The 16-bit reload value for the counter, TReloadVal, can be set between 0 and 65535 using the TReload_H and TReload_L registers. The current value of the timer is indicated in the TCouterVal_H and TCouterVal_L registers.

When the counter value reaches 0, an interrupt is automatically generated, which is indicated by the TimerIRq flag in the ComIrq register. If enabled, this interrupt signal can be indicated on the IRQ pin. The TimerIRq flag can be set and reset by the host. Depending on the configuration, the timer can stop at 0 or restart with the value set in the TReload_H and TReload_L registers.

The timer status is indicated by the TRunning bit in the Status1 register.

The timer can be started using the TStartNow bit in the Control register and stopped using the TStopNow bit in the same register.

To meet some specific protocol requirements, the timer can also be activated automatically by setting the TAuto bit

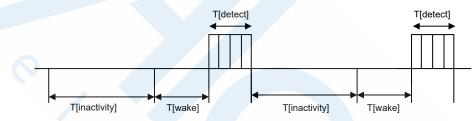
in the TMode register to logic 1.

The delay time of a timing process is set by the reload value plus one. The total delay time is calculated using the following equation:

 $t_d = (TPrescaler \times 2+1) \times (TReloadVal+1) \div 13.56MHz$

An example of calculating the total delay time is shown below, where TPrescaler=4095 and TReloadVal=65535:

39.59s=(4095×2+1)×(65535+1)÷13.56MHz


For example, a delay unit of 25µs requires 339 timer clock cycles to be counted and a TPrescaler value of 169. This configuration allows the timer to count every 25µs up to 65535 times.

LPCD Unit

The LPCD is the abbreviation of Low Power external Card Detection. This function allows the device to detect whether an external contactless card is close to it with a very low standby power consumption. If an card has been detected, an interrupt can be output to inform the host MCU to enter the normal reader communication mode and implement data exchange with the card.

LPCD Operating Principle

The LPCD mode is divided into three stages, T[inactivity](sleep period), T[wake](active period) and T[detect] (detection period), acorresponding to different actions, as shown below.

In the initial state, the chip detects the antenna field strength in the current field and automatically records it. When a card is within the effective range of the antenna, it will cause the antenna field strength to change beyond the Delta[3:0] value in the LPCD register, then the chip will automatically change to the reader state and trigger the TagDetIRq interrupt. The LPCD function related registers include the LPCD, WUPeriod and SwingsCnt.

The LPCD time parameters are described below:

- Sleep period: T[inactivity]=WUPeriod[7:0] × 256 × Tclk_32k
- Active period: T[wake]=400µs (Typ.)
- Detection period: T[detect]=SwingsCnt[3:0] × 16 × 4 × Tclk_27M12
- Card detection total time=(T[inactivity] + T[wake] + T[detect] × (Skip[2:0] + 1)

TX Driver

The signals on the TX1 and TX2 pins are signals modulated by a 13.56MHz carrier, which can be used to directly drive an antenna with some passive components for matching and filtering.

The signals on the TX1 and TX2 pins can be configured using the TxControl register. The modulation index can be set by adjusting the impedance of the driver so as to adjust the output power, current consumption and operating distance. The impedance of the P driver is configured using the CWGsP and ModGsP registers. The impedance of the N driver is configured using the GsN register. The modulation index also depends on antenna design and tunning.

15

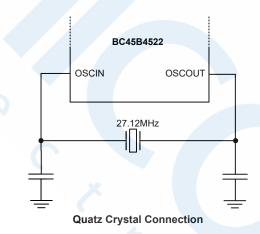
Power Saving Modes

Hardware Power-down

The hardware power-down mode is enabled when the NRSTPD pin is pulled low. This mode turns off all internal current sinks including the oscillator. All digital input buffers are separated from the input pins and their functionality is turned off (except pin NRSTPD). The output pins remain at either a high or low level.

Software Power-down

The software power-down mode is entered immediately after the PowerDown bit in the Command register is set to logic 1. This mode turns off all internal current sinks including the oscillator buffer. However, the digital input buffers are not separated from the input pins and remain their functionality. The status of the digital output pins remains unchanged.


During the software power-down, all register values, FIFO buffer content and configuration remain unchanged.

After setting the PowerDown bit to logic 0, it takes 1024 clocks to exit the software power-down mode. Setting the PowerDown bit low does not immediately clear it. This bit is cleared automatically by the chip when the software power-down mode is exited.

Transmitter Power-down

The transmitter power-down mode turns off the internal antenna drivers, thereby switching off the RF field. The transmitter power-down mode is entered by setting the TxRFEn bit in the TxControl register to 00b.

Oscillator Circuit

The clock applied to the BC45B4522 provides a time basis for the encoder and decoder synchronized to the system. Therefore, the stability of the clock frequency is an important factor to ensure the good performance of the system. To achieve the best performance, clock jitter must be as minimized.

Registers

Register Bit Behavior

Depending on the functionality of the register, the access conditions of the registers are also different. The following table describes different access conditions for the registers.

Abbreviation	Behavior	Description
R/W	Read/Write	These bits can be read and written by the host controller. Since they are used only for control, their contents are not affected by the internal state machine. For example, the ComIEn register can be read and written by the host controller, but it can only be read by the internal state machine and cannot be changed by it.
D	Dynamic	These bits can be read and written by the host controller. They can also be written automatically by the internal state machine. For example, the Command register automatically changes the value of certain bits in it after command execution.
W	Write only	Reading these register bits always returns zero.
R	Read only	These registser bits are determined by the internal states only.
Reserved	_	These register bits are reserved for future use and cannot be changed.

Register Overview

To access the registers of pages 4~6, the PageSel register of page 3 should first be configured to the correct switch value before executing any operations to the registers in the corresponding page.

Address Register Name		E-matter				
(Hex)	Register Name	Function				
Page 0						
00h	Reserved	—				
01h	Command	Start and stop command execution				
02h	ComIEn	Interrupt request enable or disable control bits				
03h	DivlEn	Interrupt request enable or disable control bits				
04h	Comlrq	Interrupt request bits				
05h	Divlrq	Interrupt request bits				
06h	Error	Error status of the last command executed				
07h	Status1	Communication status bits				
08h	Status2	Receiver and transmitter status bits				
09h	FIFOData	64-byte FIFO buffer input/output				
0Ah	FIFOLevel	Number of bytes stored in the FIFO buffer				
0Bh	WaterLevel	Level for FIFO buffer overflow and empty warning				
0Ch	Control	Internal controller				
0Dh	BitFraming	Adjustment for bit-oriented frames				
0Eh	Coll	Bit position of the first bit-collision detected				
Page 1	·					
10h	Reserved					
11h	Mode	General mode setting for transmitting and receiving				
12h	TxMode	Transmission data rate and frame format				
13h	RxMode	Reception data rate and frame format				
14h	TxControl	Antenna driver pins TX1 and TX2 control				
15h	TxASK	Transmission modulation settings				
16h	TxSel	Antenna driver signal source selection				
17h	RxSel	Internal receiver settings				
18h	Reserved					
19h	Demod	Demodulation settings				

Address		Function					
(Hex)	Register Name	Function					
1Ch	MfTx	Transmission waiting time control					
1Dh	MfRx	Parity function and high-pass bandwidth settings					
1Eh	ТуреВ	ISO/IEC 14443 B control					
1Fh	SerialSpeed	Serial UART data rate selection					
Page 2							
20h	Reserved	_					
21h	CRCResult_H	CRC result high byte					
22h	CRCResult_L	CRC result low byte					
23h	Reserved	_					
24h	ModWidth	Modulation width control					
25h	Reserved	_					
26h	RFCfg	Receiver gain setting					
27h	GsN	Controls the conductance of N driver output during non-modulation period and modulation period					
28h	CWGsP	Controls the conductance of P driver output during non-modulation period					
29h	ModGsP	Controls the conductance of P driver output during modulation period					
2Ah	TMode						
2Bh	TPrescaler	Internal timer settings					
2Ch	TReload H	16-bit timer reload value high byte					
2Dh	TReload_L	16-bit timer reload value low byte					
2Eh	TCounterVal H	16-bit timer current value high byte					
2Fh	TCounterVal L	16-bit timer current value low byte					
Page 3							
33h	TestPinEn	Programmable I/O (D1-D6) enable bits					
34h	TestPinValue	Programmable I/O (D1-D6) control bits					
37h	PageSel	Controls the register page switching					
Page 4							
31h	TestSel	MFOUT output signal selection					
32h	DataPullD	Pull-high control for MFIN and programmable I/O					
33h	RxAlgorithm0	Demodulation algorithm adjustment					
34h	AGCCfg0	Automatic gain control bits					
35h	AGCCfg1	Automatic gain control bits					
36h	RxAlgorithm1	Demodulation algorithm adjustment					
38h	RxAlgorithm2	Demodulation algorithm adjustment					
39h	RxAlgorithm3	Demodulation algorithm adjustment					
3Ah	RxCK	TypeA waveform falling time adjustment; phase selection					
3Bh	RxBand	Signal-to-noise ratio adjustment					
3Ch	LPCD	LPCD control bits					
3Dh	WUPeriod	LPCD sleep time setting					
3Eh	SwingsCnt	LPCD enable; LPCD detection time setting					
3Fh	Special	Receiver demodulation control					
Page 5	· ·						
31h	Analog	High temperature protection control bits					
32h	Noise	Noise threshold control bits					
33h	StepCtrl	Transmitter modulation control bits					
34h	AgcMin	AGC amplitude threshold setting					
0.111	RxAlgorithm6	Demodulation algorithm adjustment					

Address	Deviator Norre	Function					
(Hex)	Register Name	Function					
39h	RxAlgorithm7	Demodulation algorithm adjustment					
3Ah	RxAlgorithm8	Demodulation algorithm adjustment					
3Bh	RxAlgorithm9	Demodulation algorithm adjustment					
Page 6							
31h	LPCDRef	LPCD reference value					
32h	LPCDDet	LPCD detected value					
33h	Calibration	LPCD calibration control bits					
34h	RC27MCalValue	LPCD 27.12MHz clock calibration value					
35h	RC32KCalValue	LPCD 32kHz clock calibration value					
36h	LPCDADCRef	LPCD ADC reference level					
38h	CWGsN_LPCD	LPCD N driver control					
39h	CWGsP_LPCD	LPCD P driver control					

Register Description

Public Registesr description

Page 0

Command Register

Start and stop command execution.

Address	Bit	7	6	5	4	3	2	1	0
	Name	Rese	Reserved		RcvOff PowerDown Command[3:0]				
01h	01h Type R		R/W	R/W		R/W			
	Reset Value	0	0	1	0	0	0	0	0
Bit 7~6	Reserved: Reserved bits								
Bit 5	RcvOff: Re	eceiver ana	log block o	n/off contr	ol				
	0: On								
	1: Off								
Bit 4	PowerDown: Software power-down mode control 0: Chip in ready state								

1: Chip enters power-down mode

Bit 3~0 Command[3:0]: Command control

Based on the value of these bits, the corredsponding command is activated. Reading these bits shows which command is actually being executed. Refer to the Command Overview section for details.

ComlEn Register

Interrupt enable and disable control bits.

Address	Bit	7	6	5	4	3	2	1	0
	Name	lRqInv	TxlEn	RxIEn	IdleIEn	HiAlertIEn	LoAlertIEn	ErrlEn	TimerlEn
02h	Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Reset Value	1	0	0	0	0	0	0	0

Bit 7

IRqInv: IRQ pin state non-inverting/inverting with IRq bit state (Status1 register) control 0: Non-invert

1: Invert

In combination with the IRQPushPull bit in the DivIEn register, the default vlaue of logic 1 ensures that the output level on the IRQ pin is 3-state.

Bit 6	TxIEn : Send TxIRq interrupt request to IRQ pin 0: Not allowed 1: Allowed
Bit 5	RxIEn : Send RxIRq interrupt request to IRQ pin 0: Not allowed
	1: Allowed
Bit 4	IdleIEn: Send IdleIRq interrupt request to IRQ pin 0: Not allowed 1: Allowed
Bit 3	HiAlertIEn: Send HiAlertIRq interrupt request to IRQ pin 0: Not allowed 1: Allowed
Bit 2	LoAlertIEn: Send LoAlertIRq interrupt request to IRQ pin 0: Not allowed 1: Allowed
Bit 1	ErrIEn: Send ErrIRq interrupt request to IRQ pin 0: Not allowed 1: Allowed
Bit 0	TimerIEn : Send TimerIRq interrupt request to IRQ pin 0: Not allowed 1: Allowed

DivlEn Register

Interrupt enable and disable control bits.

Address	Bit	7	6	5	4	3	2	1	0		
	Name	IRQPushPull	Reserved	TagDetIEn	MfinActIEn	Reserved	CRCIEn	Rese	erved		
03h	Туре	R/W	—	R/W	R/W	_	R/W	-	_		
	Reset Value	0	0	0	0	0	0	0	0		
Bit 7	0: Open-drain output 1: Standard CMOS output										
Bit 6											
Bit 5	TagDetIEn : Send TagDetIRq interrupt request to IRQ pin 0: Not allowed 1: Allowed										
Bit 4	MfinActIEn: Send MfinActIRq interrupt request to IRQ pin 0: Not allowed 1: Allowed										
Bit 3	Reserved:	Reserved bit									
Bit 2											
Bit 1~0	Reserved:	Reserved bits									
, Comlrq	Register										

Interrupt request bits. All bits in this register can be cleared by software.

Address	Bit	7	6	5	4	3	2	1	0
	Name	Set1	TxlRq	RxIRq	IdleIRq	HiAlertIRq	LoAlertIRq	ErrlRq	TimerIRq
04h	Туре	W	D	D	D	D	D	D	D
	Reset Value	0	0	0	1	0	1	0	0

Bit 7

Set1: ComIrq register interrupt request flag control

0: Clear interrupt request flag in the ComIrq register 1: Set interrupt request flag in the ComIrq register

Hardware set high: When a related event occurs, the corresponding interrupt request flag in this register is automatically set high and an interrupt request is generated. It requires to set both Set1 and the corresponding interrupt request flag to 0 to clear the interrupt request. Software set high: Set both Set1 and the corresponding interrupt request flag in this register to 1 to generate the interrupt request. It requires to set both Set1 and the corresponding interrupt request flag to 0 to clear the interrupt request. Bit 6 TxIRq: Data transmission complete interrupt request flag 0: No request 1: Interrupt request This flag is set high immediately after the last data bit has been sent. Bit 5 RxIRq: Receiver detected valid data interrupt request flag 0: No request 1: Interrupt request If the RxNoErr bit in the RxMode register is set high and the data received in the FIFO is valid, this interrupt request flag will be set high. Bit 4 IdleIRq: Idle interrupt request flag 0: No request 1: Interrupt request If a command terminates, such as changing from any command to the Idle command, this interrupt request flag will be set high. If an unknown command is started, the Command[3:0] field in the Command register will be 0000b and this interrupt request flag will be set high. Starting the Idle command does not set this flag. HiAlertIRq: FIFO HiAlert interrupt request flag Bit 3 0: No request 1: Interrupt request This flag will be set high when the HiAlert bit in the Status 1 register is set to 1. This flag can only be reset using the Set1 bit of this register. Bit 2 LoAlertIRq: FIFO LoAlert interrupt request flag 0: No request 1: Interrupt request This flag will be set high when the LoAlert bit in the Status 1 register is set to 1. This flag can only be reset using the Set1 bit of this register. Bit 1 ErrIRq: Error interrupt request flag 0: No request 1: Interrupt request This flag will be set high when any bit of the Error register is set high. Bit 0 TimerIRq: Timer interrupt request flag 0: No request 1: Interrupt request This flag will be set high when the timing value TCounterVal indicated by the TCounterVal H and TCounterVal L registers is decreased to 0.

Divlrq Register

Interrupt request bits. All bits in this register can be cleared by software.

Address	Bit	7	6	5	4	3	2	1	0
	Name	Set2	Reserved	TagDetlRq	MfinActIRq	Reserved	CRCIRq	Rese	erved
05h	Туре	W	—	R/W	D		D	-	
	Reset Value	0	0	0	0	0	0	0	0

Bit 7 Set2: DivIrq register interrupt request flag control

0: Clear interrupt request flag in the DivIrq register

1: Set interrupt request flag in the DivIrq register

Hardware set high: When a related event occurs, the corresponding interrupt request flag in this register is automatically set high and an interrupt request is generated. It requires to set both Set2 and the corresponding interrupt request flag to 0 to clear the interrupt request.

Software set high: Set both Set2 and the corresponding interrupt request flag in this register to 1 to generate the interrupt request. It requires to set both Set2 and the corresponding interrupt request flag to 0 to clear the interrupt request.

	1 1
Bit 6	Reserved: Reserved bit
Bit 5	TagDetIRq: Card detection interrupt request flag
	0: No request
	1: Interrupt request
	This flag will be set high when a card has been detected.
Bit 4	MfinActIRq: MFIN valid interrupt request flag
	0: No request
	1: Interrupt request
	This flag will be set high when either a rising edge or a falling edge has been detected.
Bit 3	Reserved: Reserved bit
Bit 2	CRCIRq: CRC interrupt request flag
	0: No request
	1: Interrupt request
	This flag will be set high when the CRC command is valid and all data has been checked.
Bit 1~0	Reserved: Reserved bits

Error Register

This register shows the error status of the last command execution.

Address	Bit	7	6	5	4	3	2	1	0			
	Name	WrErr	TempErr	Reserved	BufferOvfl	CollErr	CRCErr	ParityErr	ProtocolErr			
06h	Туре	R	R	—	R	R	R	R	R			
	Reset Value	0	0	0	0	0	0	0	0			
Bit 7	1: Write	ite error oc error occurs	curs s	IFO buffer	during the	MFAuthe	nt comma	nd executio	on or durin			
	If the host writes data to the FIFO buffer during the MFAuthent command execution or during the period between the last bit transmitted on the RF interface and the last bit received on the RF interface, this flag will be set high.											
Bit 6	 TempErr: Temperature sensor over temperature flag 0: No over temperature occurs 1: Over temperature occurs This flag will be set high when the internal temperature sensor has detected an over temperature situation, in which case the antenna drivers will be turned off automatically. 											
Bit 5	Reserved: Reserved bit											
Bit 4	 BufferOvfl: FIFO buffer overflow flag 0: Buffer not overflows 1: Buffer overflows When the FIFO buffer is full, if the host or the chip internal state machine (such as receiver) continues to write data to the buffer, this flag will be set high. It can only be cleared by the 											
Bit 3	 FlushBuffer bit in the FIFOLevel register. CollErr: Data bit collision flag 0: No collision occurs 1: Collision occurs This flag will be set high when a bit collision has been detected. It is automatically cleared during the receiver start-up. This flag is only effective in the bit anti-collision mechanism of the 106kbit/s communication, and is usually set to 0 under 212kbit/s, 424kbit/s and 848kbit/s communication protocols. 											
Bit 2	CRCErr: (0: No CF 1: CRC e	RC error oce	curs	the RxCR	CEn bit in	the RxMo	de register	is set to 1	and a CRO			

Bit 1

calculation error occurs. It is automatically cleared during the receiver start-up.

- ParityErr: Parity error flag
- 0: No parity error occurs
- 1: Parity error occurs

This flag will be set high when a parity error occurs. It is automatically cleared during the receiver start-up. This flag is only effective in the 106kbit/s ISO/IEC 14443 A communication.

Bit 0 **ProtocolErr**: SOF(Start of Frame) error flag

0: No SOF error occurs

1: SOF error occurs

This flag will be set high when the SOF is incorrect. It is automatically cleared during the receiver start-up. This flag is only effective in the 106kbit/s communication.

Status1 Register

CRC, interrupt and FIFO buffer status bits.

Address	Bit	7	6	5	4	3	2	1	0			
	Name	Reserved	CRCOk	CRCReady	IRq	TRunning	Reserved	HiAlert	LoAlert			
07h	Туре		R	R	R	R		R	R			
	Reset Value	0	0	1	0	0	0	0	1			
Bit 7	Reserved:	Reserved b	it									
Bit 6		CRC calcula										
	0: CRC calculation is in progress or CRC calculation is incorrect											
	1: CRC calculation is correct											
	This flag will be set high when the CRC result is 0. Since this bit value is uncertain dur											
	transmission or reception, the CRCErr bit in the Error register can be used for CRC result checkin This bit changes to 0 during CRC coprocessor calulation and changes to 1 when the CRC calculation											
	is correctly executed.											
Bit 5	CRCReady: CRC calculation complete flag											
	0: CRC calculation is not completed											
	1: CRC calculation is completed											
	This flag will be set high when the CRC calculation is completed. It is valid only when executing the											
	CRC calculation of the CalcCRC command.											
Bit 4	IRq: Interr		indication	bit								
	0: No rec	ipt request										
			unt reques	t, the correst	onding in	terrunt ena	hle hit mu	at he set R	efer to th			
		d DivIEn re			Jonanig in	ientupt enu		<i>i</i> oo set. 1				
Bit 3		: Timer runi	<u> </u>									
	0: Not ru	nning										
	1: Runni	e										
				n means when	n the TCou	nterVal val	ue is decre	mented wit	th the time			
		flag is set hi	e									
Bit 2	Reserved:			a								
Bit 1	HiAlert: F	-										
		$\mathcal{L}ength) \leq$	waterLeve	l, HiAlert is s	set to 1.							
2:40	I a Alland E	IEO 11	1									
Bit 0		IFO low lev		ng flag Alert is set to	1							

Status2 Register

Transmitter and receiver status bits.

Address	Bit	7	6	5	4	3	2	1	0				
	Name	TempSensClear	Reserved	Rese	erved	MFCrypto1On	Mod	emState	[2:0]				
08h	Туре	R/W	—	_	_	D		R					
	Reset Value	0	0	0	0	0	0	0	0				
Bit 7	TempSens	Clear:											
	When the	When the temperature falls below the 120°C limit alarm value, the temperature error alarm can be											
	removed by setting this bit high.												
Bit 6~4	Reserved:	Reserved: Reserved bits											
Bit 3	MFCrypto	MFCrypto1On: Crypto_M unit off/on control											
	0: Off												
	1: On												
Setting this bit to 1 turns on the Crypto_M unit to enter the Crypto_M standard card reader n													
		ata communicatio			• •		be set to	1 by a si	iccessfu				
		of the MFAuthent											
Bit 5		ate[2:0]: Transmi	tter and rec	eiver state	machine	status							
	000: Idle		11.2	· (1 . D'		• ,							
		it for the StartSen					CIDE C	11.	,				
		Wait – If the TxW minimum time for					nui KF II	eld is pro	esent.				
		nsmitting	JI I X Walt I	s determin		van[4.0].							
		Wait – If the TxW	aitRF bit in	the Mode	register i	s set to 1 wait u	ntil RF fi	ield is pr	esent				
		minimum time fo						ield is pr	esent.				
		it for data	or reaction of the	a determin	ee og ier								
	110: Rec												
	111: Und	<u> </u>											

FIFOData Register

64-byte FIFO buffer input and output.

Address	Bit	7	6	5	4	3	2	1	0
	Name				FIFOD	ata[7:0]			
09h	Туре					D			
	Reset Value	0	0	0	0	0	0	0	0

Bit 7~0 **FIFOData[7:0]**: Intput/output port for the internal 64-byte FIFO buffer

It acts as a parallel in / parallel output converter for all data stream inputs and outputs of the buffer.

FIFOLevel Register

This register indicates the number of bytes stored in the FIFO buffer.

Address	Bit	7	6	5	4	3	2	1	0
	Name	FlushBuffer				FIFOLevel[6	:0]		
0Ah	Туре	W			R				
-	Reset Value	0	0	0	0	0	0	0	0

Bit 7 FlushBuffer: Clear FIFO buffer

Setting this bit to 1 will immediately clear the internal FIFO bufrer's read and write pointers, and the BufferOvfl bit in the Error register. Reading this bit always returns 0.

Bit 6~0 **FIFOLevel[6:0]**: Indication for the number of bytes stored in the FIFO buffer Writing data to the FIFOData register increments the FIFOLevel value and reading data from the FIFOData registesr decrements the FIFOLevel value.

WaterLevel Register

This register defines the level of FIFO buffer for overflow and empty warning.

Address	Bit	7	6	5	4	3	2	1	0			
	Name	Res	erved		WaterLevel[5:0]							
0Bh	Туре	-	_			R	/W					
	Reset Value	0	0	0	0	1	0	0	0			

Bit 7~6 **Reserved**: Reserved bits

WaterLevel[5:0]: Define the level of FIFO buffer for overflow and underflow warning

If the remaining space in the FIFO buffer is less than or equal to the value defined by WaterLevel[5:0], the HiAlert bit in the Status1 register will be set high.

If the used space in the FIFO buffer is less than or equal to the value defined by WaterLevel[5:0], the LoAlert bit in the Status1 register will be set high.

Control Register

Bit 5~0

Various control bits.

Address	Bit	7	6	5	4	3	2	1	0	
	Name	TStopNow	TStartNow		Reserved		R	xLastBits[2	0]	
0Ch	Туре	W	W		>			R		
	Reset Value	0	0	0	1	0	0	0	0	
Bit 7	TStopNow	: Timer imn	nediate stop	control						
	Setting this bit to 1 stops the timer immediately. Reading this bit always returns 0.									
Bit 6	TStartNow	: Timer im	nediate star	t control						
	Setting this	bit to 1 star	ts the timer	immediate	ly. Reading	this bit alv	vays returns	s 0.		
Bit 5~3	Reserved:	Reserved bi	ts							
Bit 2~0	RxLastBits	[2:0]: Indic	ation for the	e number o	f significan	t bits of las	t received b	ovte		

If this field value is 000b, it means the entire byte is valid.

BitFraming Register

Adjustment for the bit-oriented frames.

Address	Bit	7	6	5	4	3	2	1	0
	Name	StartSend		RxAlign[2:0]	1	Reserved	Т	xLastBits[2:	0]
0Dh	Туре	W		R/W		_		R/W	
	Reset Value	0	0	0	0	0	0	0	0

Bit 7 StartSend: Data transmission start control

Setting this bit to 1 activates the data transmission. This bit is valid only for the Transceive command execution.

Bit 6~4 **RxAlign[2:0]**: Define the bit position for the first bit received to be stored in the FIFO buffer 000: LSB of the received data is stored at Bit0, the second received bit is stored at Bit1, and so on. 001: LSB of the received data is stored at Bit1, the second received bit is stored at Bit2, and so on.

111: LSB of the received data is stored at Bit7, the second received bit is stored at Bit0 of the next byte, and so on.

This bit field is set for bit-oriented frame reception and is only used for the bitwise anti-collision at 106kbit/s. For all other modes this bit field is set to "000".

Bit 3 Reserved: Reserved bit

.....

Bit 2~0 **TxLastBits[2:0]**: Define the number of bits for the last byte to be transmitted This bit field is set for bit-oriented frame transmission. If this bit field is "000", it means all bits of the last byte will be transmitted.

Coll Register

This register defines the first bit collision detected	ed on the RF interface.
--	-------------------------

Address	Bit	7	6	5	4	3	2	1	0			
	Name	ValuesAfterColl	Reserved	CollPosNotValid		С	ollPos[4:0	D]				
0Eh	Туре	R/W	_	R			R					
	Reset Value	1	0	1	0	0	0	0	0			
Bit 7	ValuesAfterColl: If this bit is set to 0, all data bits will be cleared after a collision. It is only used in bitwise anti- collision at 106kbit/s, otherwise it is set to 1.											
Bit 6 Bit 5	Reserved: Reserved bit CollPosNotValid:											
		s set to 1, it indic d by CollPos[4:0		o collision is detec	cted or th	e collisio	n bit posi	tion is o	utside the			
Bit 4~0	CollPos[4:0]: Position of the first collision bit detected in the received frame (only data bits are interpreted) 00000: Indicates a bit collision at the 32nd bit 00001: Indicates a bit collision at the 1st bit											
	01000: Indicates a bit collision at the 8th bit These bits are only interpreted when the CollPosNotValid bit is 0.											

Page 1

Mode Register

This register defines the general mode settings for transmission and reception.

Address	Bit	7	6	5	4	3	2	1	0				
	Name	MSBFirst	Reserved	TxWaitRF	Reserved	PolMFin	Reserved	CRCPr	eset[1:0]				
11h	Туре	R/W	_	R/W	_	R/W	_		/W				
	Reset Value	0	0	1	1	1	1	0	1				
Bit 7	MSBFirst: When this bit is set to 1, the CRC coprocessor will calculate the CRC with the MSB first. The calculation result is stored in the CRCResult_H and CRCResult_L registers. During RF communication, this bit is ignored. Reserved: Reserved bit												
Bit 6	Reserved: Reserved bit												
Bit 5	TxWaitRF:												
	If this bit is set to 1, the transmitter is started when the RF field presents.												
Bit 4	Reserved:												
Bit 3	PolMFin: Define the MFIN pin polarity 0: MFIN pin is low active 1: MFIN pin is high active Note that the internal encoded envelop signal is low active, changing this bit will generate an MfinActIRq event.												
Bit 2	Reserved:	-	it										
Bit 1~0	 CRCPreset[1:0]: Define the preset value for the CRC coprocessor to execute CalcCRC command 00: 0000h 01: 6363h 10: A671h 11: FFFFh During any communication, the preset value is selected automatically according to the bit definition in the RxMode and TxMode registers. 												

TxMode Register

This register defines the data rate during transmission.

Address	Bit	7	6	5	4	3	2	1	0				
	Name	TxCRCEn	٦	xSpeed[2:0)]	InvMod	Reserved	TxFram	ing[1:0]				
12h	Туре	R/W		D		R/W	—	[)				
	Reset Value	0	0	0	0	0	0	0	0				
Bit 7	TxCRCEn	1:											
	Setting this	Setting this bit to 1 enables the CRC generation during the data transmission.											
Bit 6~4	TxSpeed[2	TxSpeed[2:0]: Define the bit rate during the data transmission											
		000: 106kbit/s											
	001: 212												
	010: 424												
	011: 848	: Reserved											
				4 4 - 0	101-1-:4/-								
	-	upports tran	smission ra	ties up to 84	+8K011/S.								
Bit 3	InvMod:												
	If this bit is	s set to 1, the	e inverting	value of the	e modulated	l data is sen	ıt.						
Bit 2	Reserved:	Reserved bi	t										
Bit 1~0	TxFraming[1:0]: Define the transmission data structure												
	00: ISO/IEC 14443 A / Crypto_M												
	01~10: F	Reserved											
	11: ISO/	IEC 14443 I	3										

RxMode Register

This register defines the data rate during the data reception.

Address	Bit	7	6	5	4	3	2	1	0				
	Name	RxCRCEn	F	RxSpeed[2:0)]	RxNoErr	RxMultiple	RxFra	aming				
13h	Туре	R/W		D		R/W	R/W	[)				
	Reset Value	0	0	0	0	0	0	0	0				
Bit 7	RxCRCEn												
	Setting this	bit to 1 ena	bles the Cl	RC generati	on during t	he data rec	eption.						
3it 6~4	RxSpeed [2:0]: Define the bit rate during the data reception												
	000: 106kbit/s												
	001: 212kbit/s												
	010: 424kbit/s												
	011: 848kbit/s												
		: Reserved											
	This chip supports transmission rates up to 848kbit/s.												
Bit 3	RxNoErr :												
	If this bit is remains act		invalid da	ta stream re	eceived (les	s than 4 bit	ts) will be ig	nored and t	the receiver				
Bit 2	RxMultipl	e:											
		ver stops afte ver continuo				s							
	After this I	oit is set to	1, the Rec	eive and T	ransceive of	commands	will not ter	minate aut	omatically				
	Continuous	reception c	an be stop	oed by writ	ing any con	nmand cod	e to the Con	nmand regis	ster (excep				
	Receive co	mmand) or l	by clearing	the bit by t	the host.								
Bit 1~0	RxFramin	g[1:0]: Defi	ne the data	structure to	be receive	ed							
	00: ISO/	IEC 14443 A	A / Crypto_	M									
	01~10: R	leserved											
	11: ISO/	EC 14443 E	3										

TxControl Register

This register controls the logic status of the antenna driver pins TX1 and TX2.

•		e		•							
Address	Bit	7	6	5	4	3	2	1	0		
	Name	Reserved	InvTxRFOn	Rese	erved	TxCW	Reserved	TxR	FEn		
14h	Туре	_	R/W	-	_	R/W	_	R	W/		
	Reset Value	1	0	0	0	0	0	0	0		
Bit 7	Reserved: Reserved bit										
Bit 6	InvTxRFOn:										
	If this bit is set to 1, the carrier on the TX pin is inverted when driver TX is enabled.										
Bit 5~4	Reserved :	Reserved b	oits								
Bit 3	TxCW:										
	0: Do no	ot output the	e unmodulated	113.56MH	z energy ca	arrier					
	1: Conti	nuously out	put the unmo	dulated 13.	56MHz en	ergy carrier	ſ				
Bit 2	Reserved:	Reserved b	oit								
Bit 1~0	TxRFEn:										
	00: Do n	not output th	ne modulated	13.56MHz	energy car	rier					
	01: Continuously output the modulated 13.56MHz energy carrier on TX1										
	10: Continuously output the modulated 13.56MHz energy carrier on TX2										
	11 0	. 1	1 1 1	1 / 112 5	CMIT		1 (1 7737	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

11: Continuously output the modulated 13.56MHz energy carrier on both TX1 and TX2

TxASK Register

This register controls the transmitting modulation.

Address	Bit	7	6		5	4	3	2	1	0
	Name	Reserved	Force100	ASK			Rese	erved		
15h	Туре	-	R/W				-	_		
	Reset Value	0	1		0	0	0	0	0	0

Bit 7 Reserved: Reserved bit

Bit 6 Force100ASK:

Setting this bit to 1 will enforce a 100% ASK modulation independent of the ModGsP register setting.

Bit 5~0 **Reserved**: Reserved bits

TxSel Register

This register selects the signal source for the antenna drivers.

Address	Bit	7	6	5	4	3	2	1	0	
	Name	Rese	erved	Driver	Sel[1:0]	MFOutSel[3:0]				
16h	Туре	_	_	R	W		R/	W		
	Reset Value	0	0	0	1	0	0	0	0	

Bit 7~6 **Reserved**: Reserved bits

Bit 5~4 DriverSel[1:0]: Select the input signal of drivers TX1 and TX2

00: 3-state – If selected, the drivers can only be in 3-state mode in the software power-down mode

- 01: Modulation signal (envolope) from the internal encoder, Miller encoded
- 10: Modulation signal (envolope) from the MFIN pin
- 11: High level depends on the InvTxRFOn bit setting

Bit 3~0 **MFOutSel[3:0]**: Define the MFOUT output signal

- 0000: 3-state
- 0001: Low level
- 0010: High level
- 0011: Signal defined by TstBusBitSel[2:0]
- 0100: TX tata stream with Miller encoding
- 0101: TX tata stream without Miller encoding

- 0110: RX data stream without Manchester decoding and with subcarrier
- 0111: RX data stream with Manchester decoding ("00/01" converted to 0, "10" converted to 1)
- 1000: RX data stream without Manchester decoding and without subcarrier
- 1001~1111: Reserved

RxSel Register

This registers controls the internal receiver settings.

	Address	Bit	7	6	5	4	3	2	1	0				
		Name	UARTS	UARTSel[1:0]		RxWait[5:0]								
	17h	Туре	R/	W			R/	W						
		Reset Value	1	0	0	0	1	0	0	0				
]	Bit 7~6 UARTSel[1:0]: Select contactless UART input 00: Low level 01: Manchester signal with subcarrier from the MFIN pin													
01: Manchester signal with subcarrier from the MFIN pin10: Modulated signal from the internal analog block11: NRZ coding without subcarrier from the MFIN pin, only valid for transfer speed above 106kbit/sBit 5~0RxWait[5:0]: Define the delay time before activating the receiver														

After data transmission, the activation of the receiver has a delay of RxWait[5:0]×ETU, where ETU is defined by the RxWaitEtu bit in the Special register. During this frame guard time, any signal on the RX pin will be ignored. This parameter is ignored by the Receive command and is used by all other commands. The counter starts immediately after the external RF field is switched on.

Demod Register

This register defines the demodulation settings.

Address	Bit	7	6	5	4	3	2	1	0			
	Name	Addl	[1:0]	FixIQ	TPrescalEven		Rese	erved				
19h	Туре	R/	W	R/W	R/W		_	_				
	Reset Value	0	1	0	0	1	1	0	1			
Bit 7~6	AddIQ[1:0]: Define the use of I and Q channels during reception 00: Select a stronger signal channel 01: Select a stronger signal channel and freeze the selected channel during communication 10~11: Reserved Note that the FixIQ bit must be set to 0 to enable the above settings. FixIQ:											
Bit 5			i illust de se		able the above s	eungs.						
Bitt	FixIQ : When this bit is set to 1, if AddIQ[1:0] is set to "x0", the reception is fixed to I channel; if AddIQ[1:0] is set to "x1", the reception is fixed to Q channel.											
Bit 4	$\begin{array}{l} 0: \ f_{\text{Timer}} = \\ 1: \ f_{\text{Timer}} = \end{array}$	13.56MHz/ 13.56MHz/ , the form	(2×TPresca (2×TPresca 11a of optic	ller+1) ller+2) on 0 is use	te the timer freq d for calculatio		to the Tm	node and 7	ГPrescale			
Bit 3~0	Reserved:	Reserved b	its									

MfTx Register

This registesr defines the transmission waiting time.

Address	Bit	7	6	5	4	3	2	1	0		
	Name		Reserved		TxWait[4:0]						
1Ch	Туре		_				R/W				
	Reset Value	0	1	1	0	0	0	1	0		

Bit 7~5 Reserved: Reserved bits

Bit 4~0 TxWait[4:0]: Define the transmission waiting time

> By default, waiting time=(TxWait[4:0])×ETU, where ETU is defined by the TxWaitEtu bit in the Special register.

MfRx Register

	Address	Bit	7	6	5	4	3	2	1	0		
	1Dh Ty	Name		Reserved		ParityDisable	Disable Reserved			RxHPF[1:0]		
		Туре	_			R/W	_	_	R/W			
		Reset Value	0	0	0	0	0	0	0	0		
Bit 7~5 Reserved : Reserved bits												

Bit 4	ParityDisable: Transmission and reception parity function on/off control
	0: On
	1: Off
	When this bit is set to 1, the parity bit generation for transmission and parity check for reception are
	turned off, and the received parity bit is processed as data bit.

Bit 3~2 Reserved: Reserved bits

Bit 1~0 RxHPF[1:0]: Select high-pass bandwidth

- 00: 72kHz
 - 01: 100kHz
 - 10: 150kHz
 - 11: 300kHz

Set to "11" at 106kbit/s, "10" at 212kbit/s, "01" at 424kbit/s and "00" at 848kbit/s.

TypeB Register

This register configures the ISO/IEC 14443 B functions.

Address	Bit	7	6	5		4	3	2	1	0				
	Name	RxSOFReq	RxEOFReq	Reserved	EC	FSOFWidth	NoTxSOF	NoTxEOF	TxEG	T[1:0]				
1Eh	Туре	R/W	R/W	—		R/W	R/W	R/W	R/	'W				
	Reset Value	0	0	0 0 0 0		0	0							
Bit 7	RxSOFR	eq:												
	0: Rece	ive data stream	ms with or wi	thout SOF;	ren	nove SOF and	d do not wr	ite them to	FIFO					
	1: Require SOF; ignore data streams without SOF													
Bit 6	RxEOFReq:													
	0: Receive data streams with or without EOF; remove EOF and do not write them to FIFO													
	1: Require EOF; data stream without EOF generates a protocol error													
Bit 5	Reserved	: Reserved bit	t											
Bit 4	EOFSOF	Width:												
	0: Defin	e the minimu	m length of S	OF and EC)F ii	n IOS/IEC 14	443 B 🚬							
	1: Defin	e the maximu	um length of S	SOF and EO	DF i	n IOS/IEC 14	4443 B							
Bit 3	NoTxSOI	?:												
	If this bit i	is set to 1, the	SOF will be	omitted fro	m tl	he transmitte	d framing.							
Bit 2	NoTxEO	F:												
	If this bit	is set to 1, the	EOF will be	omitted fro	m tl	he transmitte	d framing.							

Bit 1~0 **TxEG[1:0]**: Define EGT(Extra Guard Time) length

- 00: No EGT
- 01: 1 bit
- 10: 2 bits
- 11: 3 bits

SerialSpeed Register

This register selects the UART data rate. Refer to the UART Interface section for detailed configuration.

Address	Bit	7	6	5	4	4 3 2 1 0						
	Name BR_T0[2:0]				BR_T1[4:0]							
1Fh	Туре		R/W			R/W						
	Reset Value	1	1 1 1			1	0	1	1			

Bit 7~5 BR_T0[2:0]: Adjust transmission data rate

Bit 4~0 BR_T1[4:0]: Adjust transmission data rate

Page 2

CRCResult_H Register

This register shows the high byte value of the CRC calculation result.

	Address	Bit	7	6		5	4	3	2	1	0
		Name					CRCRes	ultMSB[7:0]			
21h Type R							R				
		Reset Value	1	1		1	1	1	1	1	1

Bit 7~0 CRCResultMSB[7:0]: CRC calculation result high byte value

It is valid only when the CRCReady bit in the Status1 register is set high.

CRCResult_L Register

This register shows the low byte value of the CRC calculation result.

Address	Bit	7	6	5	4	3	2	1	0
	Name				CRCResu	ItLSB[7:0]			
22h	Туре				F	२			
	Reset Value	1	1	1	1	1	1	1	1

Bit 7~0 CRCResultLSB[7:0]: CRC calculation result low byte value

It is valid only when the CRCReady bit in the Status1 register is set high.

ModWidth Register

This register sets the modulation width.

(r														
Address	Bit	7	7 6 5 4 3 2 1 0											
	Name		ModWidth[7:0]											
24h	Туре	Type R/W												
	Reset Value	0	0	1	0	0	1	1	0					

Bit 7~0 **ModWidth[7:0]**: Define the Miller modulation width to be (ModWidth+1) times the carrier frequency The maximum value is half a bit cycle.

RFCfg Register

This register configures the receiver gain.

Address	Bit	7	6	5	4	2	1	0		
	Name	Reserved		RxGa	in[3:0]		Reserved			
26h	Туре	—		R/W				_		
	Reset Value	0	1	0	0	1	0	0	0	

Bit 7 **Reserved**: Reserved bit

Bit 6~3

RxGain[3:0]: Define the receiver signal voltage gain factor

0000	18dB	1000	34dB
0001	20dB	1001	36dB
0010	22dB	1010	38dB
0011	24dB	1011	40dB
0100	26dB	1100	42dB
0101	28dB	1101	44dB
0110	30dB	1110	46dB
0111	32dB	1111	48dB

Bit 2~0 Reserved: Reserved bits

GsN Register

This register defines the conductance value when antenna drivers TX1 and TX2 are turned on and used as N drivers.

Address	Bit	7	6		5	4	3	2	1	0
	Name		CM	/GsN[3:	0]			ModG	sN[3:0]	
27h	Туре			R/W				R/	W	
	Reset Value	1	0		0	0	1	0	0	0

Bit 7~4 CWGsN[3:0]: Define the conductance value of N driver when it outputs a CW signal

The conductance value is binary-weighted. The untit conductance value of the N driver is 1/160 S. By setting this register, the conductance value of the N driver during the non-modulation period is: CWGsN[3:0]×(1/160) S.

This field setting is valid only when the drivers TX1 and TX2 are turned on.

The highest bit is forced to 1 in the software power-down mode.

Bit 3~0 **ModGsN[3:0]**: Define the conductance value of N driver when it outputs a MOD signal The conductance value is binary-weighted. The untit conductance value of the N driver is 1/160 S. By setting this register, the conductance value of the N driver during the modulation period is: ModGsN[3:0]×(1/160) S.

> This field setting is valid only when the drivers TX1 and TX2 are turned on. The highest bit is forced to 1 in the software power-down mode.

CWGsP Register

This register defines the conductance value of the P driver during the non-modulation period.

Address	Bit	7	6	5	4	3	2	1	0			
	Name	Rese	erved	CWGsP[5:0]								
28h	Туре	_	_			R/	W					
	Reset Value	0	0	1	0	0	0	0	0			

Bit 7~6 **Reserved**: Reserved bits

Bit 5~0 **CWGsP[5:0]**: Define the conductance value of P driver when it outputs a CW signal The conductance value is binary-weighted. The untit conductance value of the P driver is 1/640 S. By setting this register, the conductance value of the P driver during the non-modulation period is: CWGsP[5:0]×(1/640) S.

The highest bit is forced to 1 in the software power-down mode.

ModGsP Register

This register defines the conductance value of the P driver during the modulation period.

Address	Bit	7	6	5	5 4 3 2 1 0								
	Name	Rese	erved			ModG	sP[5:0]						
29h	Туре	_	_	R/W									
	Reset Value	0	0	1	0	0	0	0	0				

Bit 7~6 **Reserved**: Reserved bits

Bit 5~0 ModGsP[5:0]: Define the conductance value of P driver when it outputs a MOD signal

The conductance value is binary-weighted. The untit conductance value of the P driver is 1/640 S. By setting this register, the conductance value of the P driver during the modulation period is: $ModGsP[5:0] \times (1/640)$ S.

Even if the Force100ASK bit in the TxASK register is set to 1, it has no effect on the ModGsP[5:0] value.

The highest bit is forced to 1 in the software power-down mode.

TMode Register

This register defines the timer settings.

Í	Address	Bit	7	6	5		4	3	2	1	0
		Name	TAuto	Rese	erved	TAu	toRestart		TPrescal	er_Hi[3:0]	
	2Ah	Туре	R/W	R	/W		R/W		R/W		
		Reset Value	1	0	0		0	1	0	0	0

Bit 7

TAuto: Timer auto start control 0: Timer is not affected by this cotrol bit

1: Timer starts automatically at the end of data transmission at all communication speeds

After this bit is set to 1, if the RxMultiple bit in the RxMode register is 0, the timer will stop running immediately after receiving the 5th bit (1 start bit and 4 data bits); if the RxMultiple bit is 1 the timer will not stop, in which case the timer can only be stopped by setting the TstopNow bit in the Control register to 1.

Bit 6~5 **Reserved**: Reserved bits

Bit 4 TAutoRestart:

0: Timer decrements to 0 and the TimerIRq flag in the ComIrq register is set to 1

- 1: Timer automatically restarts down-counting from the 16-bit timer reload value
- Bit 3~0 **TPrescaler_Hi[3:0]**: TPrescaler value higher 4 bits Refer to the TPrescaler register.

TPrescaler Register

This register defines the timer settings.

Address	Bit	7	6	5	4	3	2	1	0
	Name				TPrescale	er_Lo[7:0]			
2Bh	Туре				R/	W			
	Reset Value	0	0	0	0	0	0	0	0

Bit 7~0 **TPrescaler_Lo[7:0]**: TPrescaler value lower 8 bits

If the TPrescalEven bit in the Demod registrer is 0: f_{Timer}=13.56MHz/(2×TPrescaler+1) If the TPrescalEven bit in the Demod registrer is 1: f_{Timer}=13.56MHz/(2×TPrescaler+2) TPrescaler=[TPrescaler_Hi:TPrescaler_Lo]

TReload_H Register

This register defines the high byte of the 16-bit timer reload value.

Address	Bit	7	6	5	4	3	2	1	0
	Name				TReloadV	/al_Hi[7:0]			
2Ch	Туре				R/	W			
	Reset Value	0	0	0	0	0	0	0	0

Bit 7~0

TReloadVal_Hi[7:0]: Timer 16-bit reload value higher 8 bits

When a start event occurs, the 16-bit reload value is loaded into the timer. Changing this register will only affect the timer on the next start event.

TReload_L Register

This register defines the low byte of the 16-bit timer reload value.

Address	Bit	7	7 6 5 4 3 2 1 0									
	Name				TReloadV	al_Lo[7:0]						
2Dh	Туре				R/	W						
	Reset Value	0	0	0	1	0	0	0	0			

Bit 7~0

TReloadVal_Lo[7:0] : Timer 16-bit reload value lower 8 bits When a start event occurs, the 16-bit reload value is loaded into the timer. Changing this register will only affect the timer on the next start event.

TCounterVal_H Register

This register shows the high byte of the timer current value.

Address	Bit	7	6	5	4	3	2	1	0
	Name				TCounter	/al_Hi[7:0]			
2Eh	Туре				F	र			
	Reset Value	0	0	0	0	0	0	0	0

Bit 7~0 TCounterVal_Hi[7:0]: Timer current value higher 8 bits

TCounterVal_L Register

This register shows the low byte of the timer current value.

Address	Bit	7	6	5	4	3	2	1	0
	Name				TCounter	Val_Lo[7:0]			
2Fh	Туре					R			
	Reset Value	0	0	0	0	0	0	0	0

Bit 7~0 TCounterVal_Lo[7:0]: Timer current value lower 8 bits

Page 3

TestPinEn Register

Address	Bit	7	6	6 5 4 3 2 1								
	Name	Reserved			TestPin	En[5:0]			Reserved			
33h	Туре	R/W			R/	W			_			
	Reset Value	1	0	0 0 0 0 0 0								

Bit 7 Reserved: Reserved bit

Bit 6~1**TestPinEn[5:0]**: Enable the output driver on one of the data pins D6~D1 that output the test signal
For example, TestPinEn0=1 enables the D1 pin output; TestPinEn5=1 enables the D6 pin output.
Note that if the SPI interface is used, only D1~D4 pins are available for output.

Bit 0 Reserved: Reserved bit

TestPinValue Register

Address	Bit	7	6	6 5 4 3 2 1								
	Name	UselO			TestPinV	/alue[5:0]			Reserved			
34h	Туре	R/W			R/	W			—			
	Reset Value	0	0	0 0 0 0 0 0								

Bit 7 UseIO:

Setting this bit to 1 enables the I/O functionality for the test port when one of the interfaces is used. The input/output behavior is defined by the TestPinEn[5:0] setting in the TestPinEn register.

Bit 6~1 TestPinValue[5:0]: Define the value of the test port when it is used as I/O port

Each output must be enabled using the corresponding bit of TestPinEn[5:0] in the TestPinEn register. If the UseIO bit is set to 1, reading this field returns the D6~D1 pin values. If the UseIO bit is set to 0, reading this field returns the value of this field.

Bit 0 Reserved: Reserved bit

PageSel Register

Address	Bit	7	6	5	4	3	2	1	0
	Name 🧹				PageS	Gel[7:0]			
37h	Туре				R	W			
	Reset Value	0	0	0	1	0	1	0	1

Bit 7~0

PageSel[7:0]: Private register switch control

0x5E: Enable access to Page 4

0xAE: Enable access to Page 5 0x5A: Enable access to Page 6

UXJA: Enable access to Page 0

To configure the registers in pages 4~6, this register should first be configured to the correct switch value before executing any operations to the registers in the corresponding page.

Private Register Description

Page 4

PageSel[7:0] must first be set to 0x5E so as to configure the registers in page 4.

TestSel Register

Address	Bit	7	6	5	4	3	2	1	0
	Name			Reserved			Tst	BusBitSel[2	2:0]
31h	Туре			R/W				R/W	
	Reset Value	0	0	0	0	0	0	0	0

Bit 7~3 **Reserved**: Reserved bits

Bit 6~3 TstBusBitSel[2:0]: Select an internal test signal to output on the MFOUT pin

000: rx_start

001: bit_sync

010: ErrIrq 011: ErrIrq + TimeoutIrq

100: clk32k

- 101: clk27m
- 110: iq_sel_flag
- 111: Undefined

DataPullD Register

Address	Bit	7	6	5	4	3	2	1	0		
	Name	PullUpManEn	Reserved	MfinPullUp_R		PDataPu	ullUp[4:1]		Reserved		
32h	Туре	R/W	R	R/W		R	/W		R/W		
	Reset Value	0	0	0	0	0	0	0	0		
Bit 7	PullUpManEn : Enable the manual control of pull-up resistor for pins MFIN and D7~D1 0: Disable 1: Enable										
Bit 6	Reserved:	Reserved bit									
Bit 5	MfinPull U	p_R : MFIN pu	ll-up resiste	or control (whe	n PullUp	ManEn=1), low act	ive			
Bit 4~1	PData Pull	Up[4:0]: D7~D	01 pull-up r	esistor control	(when Pu	llUpManl	En=1), lov	w active			
	PDataPullU	Up[4] controls Jp[1] controls I		taPullUp[3] c	ontrols I	06, PDat	aPullUp[2] contro	ols D5 and		

Bit 0 Reserved: Reserved bit

RxAlgorithm0 Register

Address	Bit	7	6	5	4	3	2	1	0
33h	Name	Reserved							BSAdjDis
	Туре			F	२			R/W	R/W
	Reset Value	0	0	0	0	0	0	0	1

Bit 7~2 Reserved: Reserved bits

Bit 1

BSAdjCnt: Select the number of bit cycles used for bit synchronization of the OOK demodulation algorithm

0: 4 bit cycles

1:8 bit cycles

Bit 0 BSAdjDis: Control the bit synchronization of the OOK demodulation altorithm 0: Enable

1: Disable

AGCCfg0 Register

· · · · · · · · · · · · · · · · · · ·										
Address	Bit	7	6	5	4	3	2	1	0	
34h	Name				Reserved				First_Gain_Indx[2]	
	Туре				R				R/W	
	Reset Value	0	0	0	0	0	0	0	0	
· · · · · · · · · · · · · · · · · · ·										

Bit 7~1 Reserved: Reserved bits

Bit 0 First_Gain_Indx[2]: AGC (Automatic Gain Control) first step gain control bit 2 First_Gain_Indx[1:0] is located in the AGCCfg1 register.

AGCCfg1 Register

Address	Bit	7	6	5	4	3	2	1	0
35h	Name	EXT_A	GC_en	Full_Scale	_Num[1:0]	First_Gain_Indx[1:0]		Gain_Step[1:0]	
	Туре	R/W		RR	R/W	RR/W		RR/W	
	Reset Value	1	1	1	0	1	1	0	0

Bit 7~6 EXT_AGC_en: AGC function control

00: Disable AGC

01: Enable - signal stage

- 10: Enable RxWait stage, signal stage
- 11: Enable RxWait stage, post-RxWait signal stage, signal stage
- Bit 5~4 Full_Scale_Num[1:0]: Define the number of saturation points for gain reduction in the automatic gain mode

- Bit 3~2 First_Gain_Indx[1:0]: AGC first step gain control bit 1~0 First_Gain_Indx[2] is located in the AGCCfg0 register.
 - First_Gain_Indx[2:0]=
 - 000: 48dB
 - 001: 44dB
 - 010: 40dB
 - 011: 36dB
 - 100: 32dB
 - 101: 42dB
 - 110: 38dB 111: 34dB

Bit 1~0

- Gain_Step[1:0]: Select the gain decrement in the automatic gain mode 00: 2dB
 - 01: 4dB
 - 10: 6dB
 - 11: Reserved

RxAlgorithm1 Register

	_											
Address	Bit	7	6	5	4	3	2	1	0			
	Name	IQFixEn	ManRxLPF	RxLP	F[1:0]	EnRx2Bit	DC_bp	Rese	rved			
36h	Туре	RW	RW	R	W	RW	RW	R\	N			
	Reset Value	0	0	0	0	0	0	0	0			
Bit 7	IQFixEn: (0: Disabl 1: Enable	e	IQ channel r	nanual sele	ection in the	e Demod re	gister					
Bit 6	t 6 ManRxLPF: Enable the low-pass bandwidth manual selection											
		natic selecti	-									
	1: Manual selection											
Bit 5~4	RxLPF[1:0]: Low-pass bandwidth selection											
	00: 1.6MHz											
	01: 1.8M	Hz										
	10: 2.0M											
	11: 2.3M	Hz										
	Set to "00"	at 106kbit/	's, set to "01'	' at 212kbit	/s, set to "1	0" at 424k	oit/s and se	t to "11" at	848kbit/s.			
Bit 3	EnRx2Bit:	Improve n	oise immunit	ty by algori	thm							
	0: Enable	e – În Type	A, the first 2	significant	data bits a	re used to in	nprove noi	se immunit	y, so data			
	shorter	r than 2 bits	s cannot be re	eceived								
	1: Disabl	e										
Bit 2	DC_bp: De	emodulation	n altorithm D	C removal	control							
	0: Enable	e DC remov	val									
	1: Disabl	le DC remo	val									
Bit 1~0	Reserved:	Reserved b	its									

RxAlgorithm2 Register

Address	Bit	7	6	5	4	3	2	1	0	
	Name		MinLev	/el[3:0]		CollRatio[3:0]				
38h	Туре		R	W			R'	W		
	Reset Value	0	1	1	0	1	0	1	1	

Bit 7~4 MinLevel[3:0]: Demodulation algorithm minimum signal detection amplitude paramter 2

Bit 3~0 CollRatio[3:0]: Demodulation algorithm TypeA collision judgement criteria parameter

RxAlgorithm3 Register

Address	Bit	7	6	5	4	3	2	1	0		
	Name	Reserved		TALevel[2:0]			EnergyLevel[3:0]				
39h	Туре	R		RW		RW					
	Reset Value	0	0	1	0	1	0	0	0		

Bit 7 **Reserved**: Reserved bit

Bit 6~4 TALevel[2:0]: Demodulation algorithm transmission end criteria parameter 1

Bit 3~0 EnergyLevel[3:0]: Demodulation algorithm transmission end criteria parameter 2

RxCK Register

Address	Bit	7	6	5	4	3	2	2 1	
	Name	Rese	erved	Reserved	TypeADT	CKDlyAuto	CKDlySel[2:0]		
3Ah	Туре	R	RW		RW	RW	RW		
	Reset Value	0	0	0	0	1	0	0	0

Bit 7~5 **Reserved**: Reserved bits

Dit , c	
Bit 4	TypeADT: TypeA wave falling time adjustment
	0: The function does not take effect
	1: Speed up the Type A wave falling edge
Bit 3	CKDlyAuto: IQ automatic phase selection
	0: IQ phase is specified by CKDlySel[2:0]
	1: IQ phase is automatically locked
Bit 2~0	CKDlySel[2:0]:

There are eight levels by setting this field from 000 to 111. It is used to select the phase angle when configuring the internal signal demodulation, which affects the card reading effect.

RxBand Register

Address	Bit	7	<	6	5	4		3	2	1	0	
	Name Reserved					MchAckH[2:0	D]		MchAckL[2:0]			
3Bh	3h Type 🦳 —			-		R/W				R/W		
	0		0	1	0		0	1	0	1		

Bit 7~6 **Reserved**: Reserved bits

Bit 5~3 MchAckH[2:0]: Manchester encoding SOF detection, half Bit1 / Noise threshold factor

Bit 2~0 MchAckL[2:0]: Manchester encoding SOF detection, half Bit0 / half Bit1 threshold factor

LPCD Register

Address	Bit	7	6	5	4	3	2	1	0	
	Name	Reserved	Reserved	CLK32K_En	CalibEn	Delta[3:0]				
3Ch	Туре	R	—	R/W	R/W	R/W				
	Reset Value	0	0	0	0	0	0	0	0	

Bit 7~6 **Reserved**: Reserved bits

Bit 5	CLK32K_En: 32kHz clock enable
	0: Disable
	1: Enable
Bit 4	CalibEn: Card detection calibration enable
	0: Disable

1: Enable

Bit 3~0 Delta[3:0]: Define the difference between the detected values with and without card presence

WUPeriod Register

Address	Bit	7	6	5	4	3	2	1	0		
	Name		WUPeriod[7:0]								
3Dh	Туре		R/W								
	Reset Value	0	0	0	0	1	1	1	1		

Bit 7~4 WUPeriod[7:0]: Sleep time setting

T[inactivity]=WUPeriod×256×Tclk_32k

SwingsCnt Register

Address	Bit	7	6	5	4	1	;	3	2	1	0	
	Name	LPCD_en		Skip[2:0	D]				Swir	ngsCnt[3:0]		
3Eh	Туре	R/W	CD_en Skip[2:0] SwingsCnt[3:0] XW R/W R/W 0 0 0 0 1 0 0 d detection enable in software reset ave may be unstable at high and low temperatures, which may cause false wake-up cause false wake-ups caused by signal jitter. ber of card detections exceeds the value defined by this field, a TagDetIRq interview		R/W							
	Reset Value	0	0 0			C)	0	1	0	0	
Bit 7	LPCD_en : Card detection enable in software reset 0: Disable											
	1: Enable											
Bit 6~4	Skip[2:0]:	Skip[2:0]: Enhance card detection stability and prevent false wake-up										
	For examp	le, when th	e tag chan	ges positio	n, the	initia	al det	ection	wave may	y become ı	instable, or	
	the detection	on wave ma	y be unsta	ble at high	and lo	ow ter	npera	tures,	which may	y cause fals	e wake-up.	
	Setting Ski	p[2:0] can p	revent fals	e wake-ups	cause	d by s	signal	jitter.				
	When the r	number of o	card detection	ions exceed	s the	value	defin	ed by	this field,	a TagDetII	Rq interrupt	
	request will	l be generat	ed.									
Bit 3~0	SwingsCnt	t[3:0]: Dete	ction time	setting								
	T[detect]=S	SwingsCnt×	16×4×Tclk	27M12								

Special Register

Bit

Address	Bit	7	6	5	4	3	2	1	0	
	Name	ThrAc	:k[1:0]	BPSK	BSMode	Res	erved	RxWaitEtu	TxWaitEtu	
3Fh	Туре	R	W	F	R/W	R	/W	R/W	R/W	
	Reset Value	0	1	0	1	0	0	0	0	
Bit 7-6 ThrAck[1:0]: Demodulation algorithm minimum signal detection amplitude paramter 3										

Bit 7~6 ThrAck[1:0]: Demodulation algorithm minimum signal detection amplitude paramter 3

5~4 BPSKBSMode[1:0)]:	Dem	odulation	algorithr	n selec	tion
--------------------	-----	-----	-----------	-----------	---------	------

- 00: Auto
- 01: Algorithm 1
- 10: Algorithm 2
- 11: Undefined
- Bit 3~2 **Reserved**: Reserved bits
- Bit 1 RxWaitEtu: RxWait ETU (Elementary Time Unit) setting
 - 0: RxWait[5:0] bits in the RxSel register take effect, ETU=128/13.56MHz (about 9.4µs) 1: RxWait[5:0] bits in the RxSel register take effect, ETU=64/13.56MHz (about 4.7µs)
- Bit 0 TxWaitEtu: TxWait ETU (Elementary Time Unit) setting

0: TxWait[4:0] bits in the MfTx register take effect, ETU=128/13.56MHz (about 9.4µs) 1: TxWait[4:0] bits in the MfTx register take effect, ETU=64/13.56MHz (about 4.7µs)

Page 5

PageSel[7:0] must first be set to 0xAE so as to configure the registers in page 5.

Analog Register

Address	Bit	7	6	5	4	3	2	1	0
	Name	Rese	erved	TEMP_en	TEMP_P	rotect[1:0]	RefCt	rl[1:0]	Reserved
31h	Туре	-	_	R/W	R/	/W	R/	W	_
	Reset Value	0	0	0	1	0	1	0	0
Bit 7~6	Reserved:	Reserved b	its						
Bit 5	TEMP en	: High temp	perature pro	tection enal	ole				
	0: On	0 1	1						
	1: Off								
Bit 4~3	3 TEMP Protect [1:0]: High temperature protection threshold selection								
	00: Unde	fined							
	01: 130°	С							
	10: 140°	C (default)							
	11: 150°	C							
Bit 2~1	RefCtrl[1:	0]: ADC qu	antifiable r	ange contro	1				
	00: 440m	ηV							
	01: 520m	ηV							
	10: 600m	ηV							
	11: 680m	ιV							
Bit 0	Reserved:	Reserved b	it						

Noise Register

Address	Bit	7	6		5	4	3	}	2	1	0
	Name	No	iseEstm [2	2:0]		ForceReSync_ BPSK	BPS	<endl< td=""><td>Factor[1:0]</td><td>OOKEndF</td><td>actor[1:0]</td></endl<>	Factor[1:0]	OOKEndF	actor[1:0]
32h	Туре		R/W			R/W		R/	W	R/	W
	Reset Value	0	1		1	1	1		1	0	1

Bit 7~5 NoiseEstm[2:0]: Noise evaluation time length factor

Bit 4 ForceReSync_BPSK:

If this bit is set to 1, execute resynchronization after demodulating each character of the BPSK frame.

Bit 3~2 BPSKEndFactor[1:0]: BPSK modulation end energy threshold factor

Bit 1~0 **OOKEndFactor[1:0]**: OOK modulation end energy threshold factor

StepCtrl Register

Address	Bit	7	6	5	4	3	2	1	0
	Name Reserved					StepCtrln	StepCtrlp	Rese	erved
33h	Туре		F	२		R/W	R/W	F	२
	Reset Value	0	0	0	0	0	0	0	0

Bit 7~4 **Reserved**: Reserved bits

Bit 3 StepCtrln: Transmission modulation N driver control bit to control the rising and falling edges of the A/B waveforms

Bit 2 StepCtrlp: Transmission modulation P driver control bit to control the rising and falling edges of the A/B waveforms

Bit 1~0 **Reserved**: Reserved bits

AgcMin Register

Address	Bit	7	6	5	4	3	2	1	0		
	Name	Rese	erved	A	gcMinValue	:3	A	gcMinValue2			
34h	Туре	F	र		R/W			R/W			
	Reset Value	0	0	0	1	0	0	0	0		

Bit 7~6 **Reserved**: Reserved bits

Bit 5~3 AgcMinValue3: AGC amplitude threshold 3

Bit 2~0 AgcMinValue2: AGC amplitude threshold 2

RxAlgorithm6 Register

		0	5	4	3	2	1	0
Name	Dis848kFlt	Peal	kValFactor	[2:0]	DisSubEndChk	NoiseLimt[2:0]		
Туре	R/W		R/W		R/W		R/W	
eset Value	0	1	1	1	0	1	1	0
	Туре	Type R/W	Type R/W	Type R/W R/W	Type R/W R/W	Type R/W R/W R/W	Type R/W R/W R/W	Type R/W R/W R/W R/W

Bit 7 Dis848kFlt: 848kbit/s subcarrier passing through filter control bit

0:	Enable	

1: Disable

Bit 6~4 PeakValFactor[2:0]: Subcarrier detection mean amplitude threshold factor

Bit 3 DisSubEndChk: Subcarrier end detection control bit

- 0: Enable
- 1: Disable

Bit 2~0 NoiseLimt[2:0]: Noise detection threshold

RxAlgorithm7 Register

Address	Bit	7	6	5	4	3	2	1	0
	Name	CntCor	nfig[1:0]	PulseFa	actor[1:0]	WidthLi	imt[1:0]	OffsetLimt[1:0]	
39h	Туре	R	W	R	/W	R/	W	R/	W
	Reset Value	0	1	0	1	0	1	1	0

Bit 7~6 CntConfig[1:0]: Subcarrier detection cycle threshold factor 2

Bit 5~4 **PulseFactor[1:0]**: Subcarrier detection energy threshold factor 2

Bit 3~2 WidthLimt[1:0]: Subcarrier detection cycle threshold factor 3

Bit 1~0 OffsetLimt[1:0]: Subcarrier detection cycle threshold factor 4

RxAlgorithm8 Register

Address	Bit	7	6 🤇	5	4	3	2	1	0	
	Name		MinPeakVal		S	tartBit0Limt[2	StartBit1	StartBit1Limt[1:0]		
3Ah	Туре		R/W			R/W		R	W	
	Reset Value	0	0	1	1	0	0	0	1	

Bit 7~5 MinPeakVal: Subcarrier detection minimum amplitude threshold

Bit 4~2 StartBit0Limt[2:0]: Half-Bit0 detection cycle threshold for Manchester frame start bit detection

Bit 1~0 StartBit1Limt[1:0]: Half-Bit1 detection cycle threshold for Manchester frame start bit detection

RxAlgorithm9 Register

Address	Bit	7	6	5	4	3	2	1	0
	Name	A	gcMinValue	e1		AgcCntNum	PreambleLimt[1:0]		
3Bh	Туре		RW			R/W		R	Ŵ
	Reset Value	0	0	0	1	0	0	1	0

Bit 7~5 AgcMinValue1: AGC amplitude threshold 1

Bit 4~2 AgcCntNum: AGC cycle threshold

Bit 1~0 **PreambleLimt[1:0]**: Preamble detection threshold

Page 6

PageSel[7:0] must first be set to 0x5A so as to configure the registers in page 6.

LPCDRef Register

Address	Bit	7	6	5	4	3	2	1	0		
	Name	ReferenceValue[7:0]									
31h	Туре				F	र					
	Reset Value	0	0	0	0	0	0	0	0		

Bit 7~0

0 **ReferenceValue**[7:0]: LPCD detection reference value

Note that when there is no tag (i.e., no load) above the antenna, adjust this value to differ from the LPCDADCRef register setting by ± 5 .

LPCDDet Register

	Address	Bit	7	6	5	4	3	2	1	0		
	32h	Name		DetectedValue[7:0]								
		Туре				F	र					
		Reset Value	0	0	0	0	0	0	0	0		

Bit 7~0 DetectedValue[7:0]: LPCD detection detected value

Calibration Register

Address	Bit	7	6	5	4	3	2	4	0	
Address	DIL	-	-	-		-		1	-	
	Name	Calib	Step	CalibMode	LPCDADCManEn	LPCDEnRCcal	RC32KCalMan	RC27MCalMan	LPCDUseRC	
33h	Туре	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	
	Reset Value	0	0	0	0	0	0	0	0	
Bit 7~6 CalibStep: CWGsP lpcd adjustment step size and range when CalibMode=1										
00: Step=1, [CWGsP lpcd-8, CWGsP lpcd+7]										
					VGsP lpcd+14	.]				
	10: St	tep=3, [C]	WGsP lp	cd-24, CV	WGsP lpcd+21	1				
	11: Step=4, $[2, 62]$									
Bit 5	CalibM	ode: Whe	en CalibE	n=1 and t	he LPCD mode	e is entered				
	0: Dii	rectly use	the ADC	sample d	ata as the refere	ence value				
	1: Ad	just CWC	isP lpcd,	use the A	DC data close	to LPCDAD	CRef setting	as the referen	ice value	
Bit 4	LPCDA	DCMan	En: LPCI	O ADC m	anual enable					
Bit 3	LPCDE	EnRCcal:	Enable R	C27MHz	and RC32kHz	calibration a	after the end	of LPCD		
	When L	PCD_en=	=1, enforc	e the RC2	27MHz calibrat	ion once;				
	When L	PCD_en=	=1 or CLk	32K_En	=1, enforce the	RC32kHz ca	alibration on	ce.		
Bit 2	RC32K	CalMan:	LPCD 32	2kHz RC	manual calibra	tion enable				
Bit 1	RC27M	ICalMan	: LPCD 2	7.12MHz	RC manual ca	libration ena	ble			
Bit 0	LPCDU	JseRC: L	PCD 27.1	2MHz RO	C enable					
DOOTH										

RC27MCalValue Register

Address	Bit	7	6	5	4	3	2	1	0		
	Name	RC27MCalValue									
34h	Туре	R/W									
	Reset Value	1 0 0 0 0 0 0 0									

Bit 7~0 RC27MCalValue: LPCD 27.12MHz RC calibration value

RC32KCalValue Register

Address	Bit	7	6	5	4	3	2	1	0	
	Name	Rese	erved	RC32KCalValue						
35h	Туре	_	_			R	/W			
	Reset Value	0	0	1	0	0	0	0	0	

Bit 7~6 **Reserved**: Reserved bits

Bit 5~0 RC32KCalValue: LPCD 32kHz RC calibration value

LPCDADCRef Register

Address	Bit	7	6	5	4	3	2	1	0	
	Name	LPCDADCRef								
36h	Туре				R/	W				
	Reset Value	1	0	0	0	0	0	0	0	

Bit 7~0 LPCDADCRef: LPCD ADC reference value

CWGsN_LPCD Register

Address	Bit	7	6	5	4	3	2	1	0
	Name		CWGsN_I	_PCD[3:0]		Reserved			
38h	Туре		R/W				-		
	Reset Value	0	0	1	1	0	0	0	0

Bit 7~4CWGsN_LPCD[3:0]: Define the conductance value of N driver during the LPCD modeBit 3~0Reserved: Reserved bits

CWGsP_LPCD Register

Address	Bit	7	6	5	4	3	2	1	0	
	Name	Res	erved	CWGsP_LPCD[5:0]						
39h	Туре	-	_			R	W/W			
	Reset Value	0	0	0	1	1	1	1	1	

Bit 7~6 **Reserved**: Reserved bits

Bit 5~0 CWGsP_LPCD[5:0]: Define the conductance value of P driver during the LPCD mode

Command Set

The BC45B4522 operation is determined by an internal state machine capable of executing a set of commands. A command is executed by writing its command code into the Command register.

The parameters and/or data required for a command are processed by the FIFO buffer.

General Features

Each command that requires a data bit stream (or data byte stream) as input immediately processes any data in the FIFO buffer. An exception to this is the Transceive command, which starts the transmitter by setting the StartSend bit in the BitFraming register.

Each command that requires some preset parameters only starts running when the correct number of parameters are received from the FIFO buffer.

The FIFO buffer is not immediately cleared when the commands start. Therefore, it is possible to write command parameters and data to the FIFO buffer before starting the command.

Each command can be interrupted by a new command written to the Command register, such as the Idle command.

Command Overview

Command	Command Code	Action
Idle	0000	No action; cancels the current command execution
CalcCRC	0011	Activates the CRC coprocessor or performs a self-test
Transmit	0100	Transmits data from the FIFO buffer
NoCmdChange	0111	No command change; used to modify some bits of the Command register without affecting the current command, such as the PowerDown bit
Receive	1000	Activates the receiver circuit
Transceive	1100	Transmits data from the FIFO buffer to antenna and automatically activates the receiver after transmission
MFAuthent	1110	Performs the MIFARE standard authentication as a reader
SoftReset	1111	Reset the chip

Command Description

Idle Command

This command places the chip in the idle mode. The command terminates itself.

CalcCRC Command

The FIFO buffer content is transferred to the CRC coprocessor and the CRC calculation starts. The calculation result is stored in the CRCResult_H and CRCResult_L registers. The CRC calculation is not limited to some specific bytes. The calculation is not stopped when the FIFO buffer is empty during the data stream. The next byte written to the FIFO buffer is also added to the calculation.

The CRC preset value is controlled by the CRCPreset[1:0] bit field in the Mode register. The preset value is loaded into the CRC coprocessor when the command starts.

This command must be terminated by writing any command to the Command register, such as the Idle command.

Transmit Command

The FIFO buffer content is transmitted immediately after starting this command. Before transmitting the FIFO buffer content, all relevant registers must be properly configured for data transmission.

This command automatically terminates when the FIFO buffer is empty. It can be terminated by another command written to the Command register.

NoCmdChange Command

This command does not affect any running command in the Command registesr. It can be used to modify any bit in the Command register except the Command[3:0], such as RcvOff bit or PowerDown bit.

Receive Command

The receiver circuit is activated by this command and then waits for a data stream to be received. All relevant registers must be correctly configured before starting this command.

This command automatically terminates when data stream ends. This is indicated by the frame end pattern or by the length byte according to the selected frame type and speed.

Note that the Receive command will not automatically terminate if the RxMultiple bit in the RxMode register is set to 1. In this case, the command must be terminated by starting another command in the Command register.

Transceive Command

This command continuously repeats the transmission of data from the FIFO buffer and the reception of data from the RF field. The first action is transmitting and after transmission the command changes to receive a data stream.

Each transmission process is started by setting the StartSend bit in the BitFraming register to logic 1. This command must be cleared by writing any other command to the Command register.

Note that if the RxMultiple bit in the RxMode register is set to 1, the Transceive command never leaves the receiving state because this state cannot be automatically cancelled.

MFAuthent Command

This command is used to perform the Crypto_M authentication to enable secure communication with any Crypto_M common cards. The following data must be written into the FIFO buffer before starting

the command.

- Authentication command code (0x60, 0x61)
- Block address
- Sector key byte 0
- Sector key byte 1
- Sector key byte 2
- Sector key byte 3
- Sector key byte 4
- Sector key byte 5
- Card serial number byte 0
- Card serial number byte 1
- Card serial number byte 2
- Card serial number byte 3

12 bytes in total must be written into the FIFO buffer.

Note that all FIFO accesses are blocked when the MFAuthent command is active. If there is an access to the FIFO buffer, the WrErr bit in the Error register will be set high.

This command automatically terminates when the Crypto_M card is authenticated and the MFCrypto1On bit in the Status2 register is set high. This command dose not automatically terminate if the card does not respond. Therefore, the timer must be initialised to the automatic mode. In this case, in addition to the IdleIRq flag, the TimerIRq flag can also be used as the command termination criterion. During the authentication process, the RxIRq and TxIRq flags are blocked. The MFCrypto1On bit is valid only after the authentication command is completed, either after processing the agreement or after writing the Idle command code to the Command register.

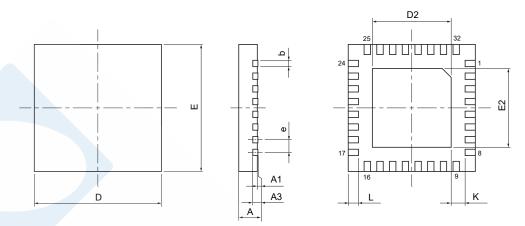
If an error occurs during the authentication process, the ProtocolErr bit in the Error is set high and the MFCrypto1On bit in the Status2 register is cleared to zero.

SoftReset Command

This command performs a reset to the chip. The data in the internal buffer remains unchanged and all registers are set to the reset values. The command automatically terminates when finished.

Note: The SerialSpeed register is reset and therefore the serial data rate is set to 9.6kbit/s.

Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/</u> <u>Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

SAW Type 32-pin QFN (4mm×4mm×0.75mm) Outline Dimensions

Symbol		Dimensions in inch							
Symbol	Min.	Nom.	Max.						
A	0.028	0.030	0.031						
A1	0.000	0.001	0.002						
A3		0.008 REF							
b	0.006	0.008	0.010						
D	0.157 BSC								
E		0.157 BSC							
e		0.016 BSC							
D2	0.100	—	0.108						
E2	0.100	—	0.108						
L	0.014	0.016	0.018						
К	0.008	—							

Symbol	Dimensions in mm							
Symbol	Min.	Nom.	Max.					
A	0.70	0.75	0.80					
A1	0.00	0.02	0.05					
A3	0.203 REF							
b	0.15	0.20	0.25					
D	4.00 BSC							
E		4.00 BSC						
е		0.40 BSC						
D2	2.55	<u> </u>	2.75					
E2	2.55		2.75					
L	0.35	0.40	0.45					
K	0.20	_	_					

Singel 3 | B-2550 Kontich | Belgium | Tel. +32 (0)3 458 30 33 info@alcom.be | www.alcom.be Rivium 1e straat 52 | 2909 LE Capelle aan den IJssel | The Netherlands Tel. +31 (0)10 288 25 00 | info@alcom.nl | www.alcom.nl

Copyright[®] 2023 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.

Rev. 1.00

October 13, 2023