

Datasheet

Lyra 24S

Version 1.0

REVISION HISTORY

Version	Date	Notes	Contributors	Approver
1.0	24 May 2023	Initial Release	Robert Gosewehr, Raj Khatri, Dave Drogowski	Jonathan Kaye

CONTENTS

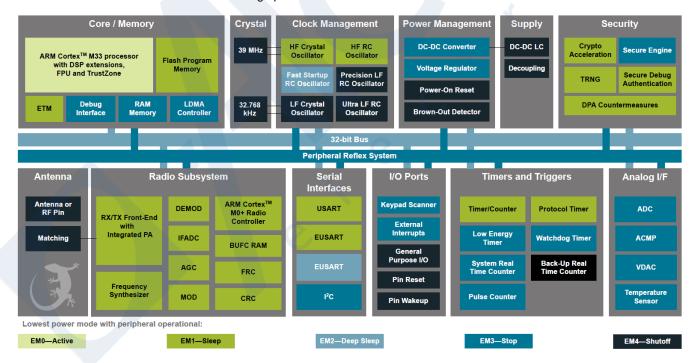
1	Introd	duction	5
1.	.1	Key Features	5
1.	.2	Hardware Features	6
1.	.3	Firmware Options	7
2	Orde	ring Information	7
3	Syste	em Overview	8
3.	.1	Block Diagram	8
3.	.2	EFR32BG24 SoC	9
3.	.3	Integrated Antenna	9
3.	.4	External Antenna	9
3.	.5	Power Supply	10
3.	.6	General Purpose Input/Output (GPIO)	10
3.	.7	Security	10
4	Elect	rical Specifications	13
4.	.1	Absolute Maximum Ratings	13
4.	.2	General Operating Conditions	14
4.	.3	MCU Current Consumption at 3.0V	14
4.	.4	Radio Current Consumption with 3.0 V Supply	16
4.	.5	RF Transmitter General Characteristics for the 2.4 GHz Band	
4.	.6	RF Receiver General Characteristics for the 2.4 GHz Band	17
4.	.7	RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate	17
4.	.8	RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate	18
4.	.9	RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate	19
4.	.10	RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate	20
4.	.11	High-Frequency Crystal	21
4.	.12	Low-Frequency Crystal Oscillator	21
4.	.13	Precision Low Frequency RC Oscillator (LFRCO)	22
4.	.14	GPIO Pins	22
4.	.15	Microcontroller Peripherals	23
4.	.16	Antenna Radiation and Efficiency for Lyra 24S Integrated Antenna	24
5	Refe	rence Diagrams	27
5.	.1	Network Co-Processor (NCP) Application with UART Host	27
5.	.2	SoC Application	28
5.	.3	Boot	28
6	Pin D	Definitions	29
6.	.1	Module Pinout	29
6.	.2	Alternate Pin Functions	30

	6.3	Analog Peripheral Connectivity	31
	6.4	Digital Peripheral Connectivity	31
7	Desig	gn Guidelines	35
	7.1	Layout and Placement	35
	7.2	Best Design Practices.	38
	7.3	Radio Performance vs. Carrier Board Size	39
	7.4	Impact of Human Body and Other Materials in Close Proximity	40
	7.5	Reset	40
	7.6	Debug	41
	7.7	Packet Trace Interface (PTI)	41
	7.8	Lyra 24S Module 50 Ohms RF Track Design for Connecting External Antenna with the Lyra 24S	42
	7.9	External Antenna Integration with the Lyra 24S Module 453-00170	45
8	Pack	age Specifications	46
	8.1	Package Outline	46
	8.2	PCB Land Pattern	47
	8.3	Package Marking	48
9	Solde	ering Recommendations	49
	9.1	Reflow for lead Free Solder Paste	49
	9.2	Recommended Reflow Profile for lead Free Solder Paste	49
10) Misce	ellaneous	49
	10.1	Cleaning	49
	10.2	Rework	49
	10.3	Handling and Storage	50
11	Tray	and Reel	51
12	? Relia	bility Test	
	12.1	Climatic And Dynamic	52
	12.2	Reliability MTBF Prediction	53
13	Regu	ılatory	53
	13.1	Regulatory information	53
	13.2	Maximum Regulatory Certified RF TX Power per Country (TBD)	53
14	Bluet	tooth SIG Qualification	54
	14.1	Overview	54
1 6	· ^ dd;+	tional Information	55

1 Introduction

The Lyra 24S is a secure, high-performance wireless module optimized for the needs of battery and line-powered IoT devices running on Bluetooth networks.

Based on the **Series 2 EFR32BG24 SoC**, it enables Bluetooth® Low Energy connectivity, delivering exceptional RF performance and energy efficiency, industry-leading Se- cure Vault® technology, and future-proofing capabilities.


The Lyra 24S is a complete System in Package solution offered with robust and fully upgradeable software stacks, global regulatory certifications, advanced development and debugging tools, and documentation that simplifies and minimizes the development cycle of your end-product, helping to accelerate its time-to-market.

The Lyra 24S is targeted for a broad range of applications, including:

- Smart Home Devices
- Lighting
- Gateways and Digital Assistants
- Building Automation and Security

1.1 Key Features

- Bluetooth Low Energy 5.3
- Bluetooth Mesh connectivity
- Built-in antenna or RF pin
- Up to 10 dBm TX output power (see Maximum Regulatory Certified RF TX Power per Country)
- -97 dBm BLE 1M RX sensitivity
- 32-bit ARM® Cortex®-M33 core running up to 78 MHz
- 1536/256 kB of Flash/RAM memory
- Vault High or Vault Mid security
- Rich set of analog and digital peripherals
- 32 GPIO pins
- -40 to 105 °C
- 7mm x 7mm x 1.18mm

1.2 Hardware Features

Supported Protocols

- Bluetooth Low Energy (BLE) 5.3
- Bluetooth Mesh
- Matter-ready Smart Home Connectivity

Wireless System-on-Chip

- 2.4 GHz radio
- TX power up to +10 dBm
- 32-bit ARM Cortex®-M33 with DSP instruction and floating-point unit for efficient signal processing
- 1536 kB flash program memory
- 256 kB RAM data memory
- Embedded Trace Macrocell (ETM) for advanced debugging

Receiver Sensitivity

- -105.1 dBm (0.1% BER) at 125 kbps GFSK
- -100.7 dBm (0.1% BER) at 500 kbps GFSK
- -97.0 dBm (0.1% BER) at 1 Mbps GFSK
- -94.3 dBm (0.1% BER) at 2 Mbps GFSK

Current Consumption

- 5.1 mA RX current at 1 Mbps GFSK
- 4.6 mA TX current at 0 dBm
- 23.4 mA TX current at 10 dBm
- 33.4 μA/MHz in Active Mode (EM0) at 39.0 MHz
- 1.3 µA EM2 DeepSleep current (16 kB RAM retention and RTC running from LFRCO)

Regulatory Certification

- CE (EU)
- UKCA (UK)
- FCC (USA)
- ISED (Canada)
- MIC (Japan)
- KC (South Korea)
- RCM (Australia and New Zealand)

Operating Range

- 1.8 to 3.8 V
- -40 to +105 °C

Dimensions

7 mm x 7 mm x 1.18 mm

Security

- Secure Boot with Root of Trust and Secure Loader (RTSL)
- Hardware Cryptographic Acceleration with DPA counter- measures for AES128/256, SHA-1, SHA-2 (up to 256-bit), ECC (up to 256-bit), ECDSA, and ECDH
- True Random Number Generator (TRNG) compliant with NIST SP800-90 and AIS-31
- ARM® TrustZone®
- Secure Debug Interface lock/unlock
- Secure Key Management with PUF
- Anti-Tamper
- Secure Attestation

MCU Peripherals

- Analog to Digital Converter (ADC)
 - 12-bit @ 1 Msps
 - 16-bit @ 76.9 ksps
- 2 x Analog Comparator (ACMP)
- 2 x Digital to Analog Converter (VDAC)
- Up to 32 General Purpose I/O pins with output state retention and asynchronous interrupts
- 8 Channel DMA Controller
- 16 Channel Peripheral Reflex System (PRS)
- 3 x 16-bit Timer/Counter with 3 Compare/Capture/PWM channels
- 2 x 32-bit Timer/Counter with 3 Compare/Capture/PWM channels
- 2 x 32-bit Real Time Counter (SYSRTC/BURTC)
- 24-bit Low Energy Timer for waveform generation (LETIMER)
- 16-bit Pulse Counter with asynchronous operation (PCNT)
- 2 × Watchdog Timer (WDOG)
- 1 x Universal Synchronous/Asynchronous Receiver/Transmitter (USART), supporting UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
- 2 x Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter (EUSART) supporting UART/SPI/DALI/ IrDA
- $2 \times I^2C$ interface with SMBus support
- Low-Frequency RC Oscillator with precision mode to replace 32 kHz sleep crystal (LFRCO)
- Keypad scanner supporting up to 6x8 matrix (KEYSCAN)
- Die temperature sensor with +/- 1.5 °C accuracy after single-point calibration

All Rights Reserved

1.3 Firmware Options

The Lyra 24S series supports two different firmware options for software development:

AT Command Set - fully featured and extensible to suit any developer's needs.

- Proven over 5+ years
- Basic Bluetooth LE cable replacement
- Simplest implementation possible

C Code - Full software development with Silicon Labs SDK and Toolchain

- Native C code development
- Use Simplicity Studio IDE
- Full functionality of Silicon Labs HW / SW

ORDERING INFORMATION

Table 1: Ordering Information

Part	Description
453-00170C	Module, SIP, LYRA 24S, Integrated Antenna (Silicon Labs EFR32BG24) - Cut/Tape
453-00170R	Module, SIP, LYRA 24S, Integrated Antenna (Silicon Labs EFR32BG24) - Tape/Reel
453-00170-K1	Development Kit, SIP, LYRA 24S, Integrated Antenna

Note:

- Lyra 24S series modules operate in the 2.4 GHz ISM frequency band (BLE range: 2402-2480MHz).
- The maximum RF TX power allowed by different regional regulatory authorities may differ from the maximum output power a module can produce. End-product manufacturers must then verify that the module is configured to meet the regulatory limits for each region in accordance with the local rules and the formal certification test reports.
- See section Maximum Regulatory Certified RF TX Power per Country.
 Lyra 24S modules are pre-programmed with Lyra 24S BGAPI UART/OTA DFU bootloader. Lyra 24S AT firmware can be loaded by the customer (via SWD interface or via boot loader (UART or OTA)).

3 SYSTEM OVERVIEW

3.1 Block Diagram

The Lyra 24S module is a highly integrated, high-performance system in package with all the hardware components needed to enable 2.4 GHz wireless connectivity and support robust networking capabilities via multiple wireless protocols.

Built around the **EFR32BG24 Wireless SoC**, the Lyra 24S includes a built-in antenna, an RF matching network (optimized for transmit power efficiency), supply decoupling and filtering components, an LC tank for DC-DC conversion, a 39 MHz reference crystal, and an RF shield. Also, it supports the use of an external 32 kHz crystal as a low frequency reference signal via GPIO pins for use cases demanding maximum energy efficiency.

For designs where an external antenna solution may be beneficial, a module variant with a 50 Ω -matched RF pin instead of the built-in antenna is available.

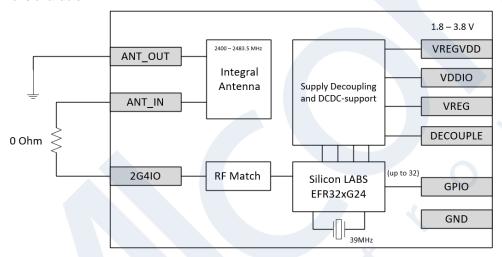


Figure 1: Lyra 24S Block Diagram - Integral Antenna

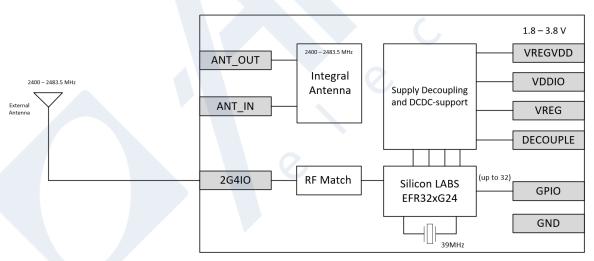


Figure 2: Lyra 24S Block Diagram - External Antenna

Note: There is only one Module, SIP, LYRA 24S, Integrated Antenna (Silicon Labs EFR32BG24) 453-00170, to create the External Antenna connection requires removal of 0R resistor (Figure 1) on customer's board to allow the external antenna to be connected Lyra 24S pin 3 2G4IO (shown in Figure 2). See section Lyra 24S Module 50 Ohms RF Track Design for Connecting External Antenna with the Lyra 24S.

A simplified internal schematic for the Lyra 24S module is shown in Figure 3.

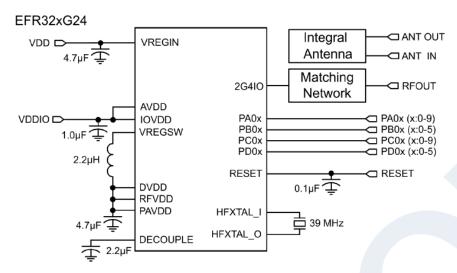


Figure 3: Lyra 24S Module Schematic

3.2 EFR32BG24 SoC

The **EFR32BG24 SoC** features a 32-bit ARM Cortex M33 core, a 2.4 GHz high-performance radio, 1536 kB of Flash memory, 256 kB of RAM, a dedicated core for security, a rich set of MCU peripherals, and various clock management and serial interfacing options. See the EFR32xG24 Reference Manual for details.

3.3 Integrated Antenna

Lyra 24S modules come with two antenna solution variants: a built-in integral ground loop type antenna realized by a PCB trace design, or a 50Ω -matched RF pin to support an external antenna. Typical performance characteristics for the built-in antenna are detailed in the table below. See Antenna Radiation and Efficiency for Lyra 24S Integrated Antenna and External Antenna Integration with the Lyra 24S Module 453-00170 for other relevant details.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Antenna frequency range	FRANGE		2400	_	2483.5	MHz
Antenna Gain	G _{MAX}	Maximum relative to isotropic	_	_	1.48	dBi
Antenna Efficiency	Efficiency		-2.5	_	-1.36	dB
Reference impedance	Z		_	50	_	Ω
Dielectric Constant Host Board	DI _{CONST}		_	4.3	_	
Trace Thickness	TTHICKNESS		_	47	_	um
VSWR	VSWR	Maximum	_	_	2:1	

Antenna efficiency, gain, and radiation pattern are dependent on the application PCB layout and mechanical design. Antenna specification is based on the assumption that the host board design guidelines in section are followed.

3.4 External Antenna

Lyra 24S module can be used with external antennas (certified by Laird Connectivity) and requires a RF 50 Ohm track (Ground Coplanar Waveguide) to be designed to run from Lyra 24S module 2G4IO (pin 6) to an RF antenna connector (IPEX MHF 4) on the host PCB. The 50Ohm RF track design and length **MUST** be copied as defined in section Lyra 24S Module 50 Ohms RF Track Design for Connecting External Antenna with the Lyra 24S.

The list of supported external antennas (certified by Laird Connectivity) are listed in section External Antenna Integration with the Lyra 24S Module.

3.5 Power Supply

The Lyra 24S requires a primary supply (VDD) and IO supply (VDDIO) voltage to operate. All necessary decoupling, filtering and DC-DC-related components are included in the module.

3.6 General Purpose Input/Output (GPIO)

The Lyra 24S has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

All of the pins on ports A and port B are EM2 capable. These pins may be used by Low-Energy peripherals in EM2/3 and may also be used as EM2/3 pin wake-ups. Pins on ports C and D are latched/retained in their current state when entering EM2 until EM2 exit upon which internal peripherals could once again drive those pads.

A few GPIOs also have EM4 wake functionality. These pins are listed in Alternate Pin Functions.

3.7 Security

Lyra 24S modules support one of two levels in the Security Portfolio offered by Silicon Labs: **Secure Vault Mid** or **Secure Vault High.** Lyra 24S modules support Secure Vault High.

Secure Vault is a collection of technologies that deliver state-of-the-art security and upgradability features to protect and future proof IoT devices against costly threats, attacks, and tampering. A dedicated security CPU enables the Secure Vault functions and isolates cryptographic functions and data from the Cortex-M33 core. Lyra 24S support Secure Vault High.

Table 2: Secure Vault Features

Feature	Secure Vault Mid	Secure Vault High
True Random Number Generator (TRNG)	Yes	Yes
Secure Boot with Root of Trust and Secure Loader (RTSL)	Yes	Yes
Secure Debug with Lock/Unlock	Yes	Yes
DPA Countermeasures	Yes	Yes
Anti-Tamper		Yes
Secure Attestation		Yes
Secure Key Management		Yes
Symmetric Encryption	 AES 128 / 192 / 256 bit ECB, CTR, CBC, CFB, CCM, GCM, CBC-MAC, and GMAC 	 AES 128 / 192 / 256 bit ECB, CTR, CBC, CFB, CCM, GCM, CBC-MAC, and GMAC ChaCha20
Public Key Encryption - ECDSA / ECDH / EdDSA	• p192 and p256	p192, p256, p384 and p521Curve25519 (ECDH)Ed25519 (EdDSA)
Key Derivation	■ ECJ-PAKE p192 and p256	 ECJ-PAKE p192, p256, p384, and p521 PBKDF2 HKDF
Hashes	SHA-1SHA-2/256	SHA-1SHA-2 256, 384, and 512Poly1305

3.7.1 Secure Boot with Root of Trust and Secure Loader (RTSL)

The Secure Boot with RTSL authenticates a chain of trusted firmware that begins from an immutable memory (ROM).

It prevents malware injection, prevents rollback, ensures that only authentic firmware is executed, and protects Over The Air updates. For more information about this feature, see Silicon Labs' AN1218: Series 2 Secure Boot with RTSL.

3.7.2 Cryptographic Accelerator

The Cryptographic Accelerator is an autonomous hardware accelerator with Differential Power Analysis (DPA) countermeasures to protect keys.

It supports AES encryption and decryption with 128/192/256-bit keys, ChaCha20 encryption, and Elliptic Curve Cryptography (ECC) to support public key operations, and hashes.

Supported block cipher modes of operation for AES include:

- ECB (Electronic Code Book)
- CTR (Counter Mode)
- CBC (Cipher Block Chaining)
- CFB (Cipher Feedback)
- GCM (Galois Counter Mode)
- CCM (Counter with CBC-MAC)
- CBC-MAC (Cipher Block Chaining Message Authentication Code)
- GMAC (Galois Message Authentication Code)

The Cryptographic Accelerator accelerates Elliptical Curve Cryptography and supports the NIST (National Institute of Standards and Technology) recommended curves including P-192, P-256, P-384, and P-521 for ECDH (Elliptic Curve Diffie-Hellman) key derivation, and ECDSA (Elliptic Curve Digital Signature Algorithm) sign and verify operations. Also supported is the non-NIST Curve25519 for ECDH and Ed25519 for EdDSA (Edwards-curve Digital Signature Algorithm) sign and verify operations.

Secure Vault also supports ECJ-PAKE (Elliptic Curve variant of Password Authenticated Key Exchange by Juggling) and PBKDF2 (Password-Based Key Derivation Function 2).

Supported hashes include SHA-1, SHA-2/256/384/512 and Poly1305.

This implementation provides a fast and energy efficient solution to state of the art cryptographic needs.

3.7.3 True Random Number Generator

The True Random Number Generator module is a non-deterministic random number generator that harvests entropy from a thermal energy source. It includes start-up health tests for the entropy source as required by NIST SP800-90B and AIS-31 as well as online health tests required for NIST SP800-90C.

The TRNG is suitable for periodically generating entropy to seed an approved pseudo random number generator.

https://www.lairdconnect.com/ Americas: +1-800-492-2320 © Copyright 2023 Laird Connectivity

3.7.4 Secure Debug with Lock/Unlock

For obvious security reasons, it is critical for a product to have its debug interface locked before being released in the field.

In addition, Secure Vault High also provides a secure debug unlock function that allows authenticated access based on public key cryptography. This functionality is particularly useful for supporting failure analysis while maintaining confidentiality of IP and sensitive end-user data.

For more information about this feature, see Silicon Labs' AN1190: Series 2 Secure Debug.

3.7.5 DPA Countermeasures

The AES and ECC accelerators have Differential Power Analysis (DPA) countermeasures support. This makes it very expensive from a time and effort standpoint to use DPA to recover secret keys.

3.7.6 Secure Key Management with PUF

Key material in Secure Vault High products is protected by "key wrapping" with a standardized symmetric encryption mechanism. This method has the advantage of protecting a virtually unlimited number of keys, limited only by the storage that is accessible by the Cortex-M33, which includes off-chip storage as well. The symmetric key used for this wrapping and unwrapping must be highly secure because it can expose all other key materials in the system. The Secure Vault Key Management system uses a Physically Unclonable Function (PUF) to generate a persistent device-unique seed key on power up to dynamically generate this critical wrapping/unwrapping key which is only visible to the AES encryption engine and is not retained when the device loses power.

3.7.7 Anti-Tamper

Secure Vault High devices provide internal tamper protection which monitors parameters such as voltage, temperature, and electro- magnetic pulses as well as detecting tamper of the security sub-system itself. Additionally, 8 external configurable tamper pins support external tamper sources, such as enclosure tamper switches.

For each tamper event, the user is able to select the severity of the tamper response ranging from an interrupt, to a reset, to destroying the PUF reconstruction data which will make all protected key materials un-recoverable and effectively render the device inoperable. The tamper system also has an internal resettable event counter with programmable trigger threshold and refresh periods to mitigate false positive tamper events.

For more information about this feature, see Silicon Labs' AN1247: Anti-Tamper Protection Configuration and Use.

3.7.8 Secure Attestation

Secure Vault High products support Secure Attestation, which begins with a secure identity that is created during the Silicon Labs manufacturing process. During device production, each device generates its own public/private keypair and securely stores the wrapped private key into immutable OTP memory and this key never leaves the device. The corresponding public key is extracted from the device and inserted into a binary DER-encoded X.509 device certificate, which is signed into a Silicon Labs CA chain and then programmed back into the chip into an immutable OTP memory.

The secure identity can be used to authenticate the chip at any time in the life of the product. The production certification chain can be requested remotely from the product. This certification chain can be used to verify that the device was authentically produced by Silicon Labs. The device unique public key is also bound to the device certificate in the certification chain. A challenge can be sent to the chip at any point in time to be signed by the device private key. The public key in the device certificate can then be used to verify the challenge response, proving that the device has access to the securely stored private key, which prevents counterfeit products or impersonation attacks.

For more information about this feature, see Silicon Labs' AN1268: Authenticating Silicon Labs Devices Using Device Certificates.

ELECTRICAL SPECIFICATIONS 4

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_A=25 °C and VDD = VDDIO = 3.0 V, by production test and/or technology characterization.
- Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Absolute Maximum Ratings 4.1

Table 3: Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Storage temperature range	T _{STG}		-40	_	+105	°C
Voltage on any supply pin	V_{DDMAX}		-0.3		3.8	V
Voltage ramp rate on any supply pin	VDDRAMPMAX				1.0	V/µs
DC voltage on any GPIO pin	VDIGPIN		-0.3		V _{VDDIO} +0.3	V
DC voltage on RESETn pin ¹	VRESETn		-0.3		3.8	V
Absolute voltage on RFOUT pin	V _{MAX2G4}		-0.3		V _{VDD} +0.3	V
Total current into VDD pin	I_{VDDMAX}	Source		_	200	mA
Total current into GND pin	I _{VSSMAX}	Sink	_		200	mA
Current per I/O pin	I _{IOMAX}	Sink	_		50	mA
		Source		. —	50	mA
Current for all I/O pins	I _{IOALLMAX}	Sink			200	mA
		Source			200	mA

Note:

Americas: +1-800-492-2320 Europe: +44-1628-858-940 All Rights Reserved Hong Kong: +852-2762-4823

^{1.} The RESETn pin has a pull-up device to the internal DVDD supply. For minimum leakage, RESETn should not exceed the voltage at DVDD, which is generated by the DC-DC converter. DVDD is equal to 1.8 V when DC-DC is active and bypassed to VDD when DC-DC is inactive.

4.2 General Operating Conditions

Table 4: General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating ambient temperature range	T _A		-40	_	+105	°C
VDD operating supply voltage	V_{VDD}	DC-DC in regulation	2.2	3.0	3.8	V
		DC-DC in bypass	1.8	3.0	3.8	V
VDDIO operating supply voltage	V_{VDDIO}	AVDDBODEN=0, IOVDDxBODEN=0 ¹	1.71	3.0	3.8	V
HCLK and SYSCLK frequency	f _{HCLK}	VSCALE2, MODE = WS1			78	MHz
		VSCALE2, MODE = WS0			40	MHz
		VSCALE1, MODE = WS0		_	40	MHz
EM01 Group A clock frequency	f _{EM01GRPACLK}	VSCALE2			78	MHz
		VSCALE1	_	_	40	MHz
EM01 Group C clock frequency	f _{EM01GRPCCLK}	VSCALE2		_	78	MHz
		VSCALE1	_		40	MHz
Radio HCLK frequency	f _{RHCLK}	VSCALE2 or VSCALE1		39.0		MHz

Note:

4.3 MCU Current Consumption at 3.0V

Unless otherwise indicated, typical conditions are: VDD = VDDIO = 3.0 V, DC-DC in regulation. Voltage scaling level = VSCALE1. $T_A = 25$ °C. Minimum and maximum values in this table represent the worst conditions across process variation at $T_A = 25$ °C.

Table 5: MCU Current Consumption at 3.0V

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals disabled	I _{ACTIVE}	78 MHz HFRCO w/ DPLL referenced to 39 MHz crystal, CPU running Prime from flash, VSCALE2	_	33.3	_	μΑ/MHz
		78 MHz HFRCO w/ DPLL referenced to 39 MHz crystal, CPU running while loop from flash, VSCALE2	_	32.8	_	μA/MHz
		78 MHz HFRCO w/ DPLL referenced to 39 MHz crystal, CPU running CoreMark loop from flash, VSCALE2	_	49.1	_	µA/MHz
		39 MHz crystal, CPU running Prime from flash	_	33.9	_	µA/MHz
		39 MHz crystal, CPU running while loop from flash	_	33.4	_	µA/MHz
		39 MHz crystal, CPU running CoreMark loop from flash	_	49.4	_	µA/MHz
		38 MHz HFRCO, CPU running while loop from flash	_	28.1	_	μΑ/MHz

^{1.} The AVDD and IOVDD BOD enable bits are in the EMU_BOD3SENSE register. These BODs are disabled on reset.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM1 mode with all	I _{EM1}	78 MHz HFRCO w/ DPLL referenced to 39 MHz crystal, VSCALE2	_	22.6	_	μΑ/MHz
peripherals disabled		39 MHz crystal	_	24.4	_	µA/MHz
		38 MHz HFRCO	_	19.0	_	µA/MHz
Current consumption in EM2 mode, VSCALE0	I _{EM2_VS}	256 kB RAM and full Radio RAM retention, RTC running from LFXO ¹	_	3.1	_	μΑ
		256 kB RAM and full Radio RAM retention, RTC running from LFRCO ¹	- /	3.1	-	μΑ
		16 kB RAM and full Radio RAM retention, RTC running from LFXO ¹		1.3	_	μΑ
		16 kB RAM and full Radio RAM retention, RTC running from LFRCO ¹	-	1.3	_	μΑ
		16 kB RAM and full Radio RAM retention, RTC running from LFRCO in precision mode ¹		1.9	_	μΑ
Current consumption in EM3 mode, VSCALE0	I _{EM3_VS}	256 kB RAM and full Radio RAM retention, RTC running from ULFRCO ¹	-	2.9	1	μΑ
		16 kB RAM and full Radio RAM retention, RTC running from ULFRCO ¹	_	1.1	_	μΑ
Current consumption in EM4 mode	I _{EM4}	No BURTC, no LF oscillator		0.31		μΑ
		BURTC with LFXO	_	0.64	_	μΑ
Current consumption during reset	I _{RST}	Hard pin reset held	×-	467	_	μΑ

Note:

1. CPU cache retained, EM0/1 peripheral states retained

https://www.lairdconnect.com/

Radio Current Consumption with 3.0 V Supply

RF current consumption measured with MCU in EM1 and all MCU peripherals disabled. Unless otherwise indicated, typical conditions are: VDD = VDDIO = 3.0 V, DC-DC in regulation. $T_A = 25 \,^{\circ}\text{C}$.

Table 6: Radio Current Consumption with 3.0 V Supply

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in	I _{RX_ACTIVE}	125 kbit/s, 2GFSK, f = 2.4 GHz		5.4		mA
receive mode, active packet		500 kbit/s, 2GFSK, f = 2.4 GHz		5.5	_	mA
reception, VSCALE1, EM1P		1 Mbit/s, 2GFSK, f = 2.4 GHz		5.1	_	mA
		2 Mbit/s, 2GFSK, f = 2.4 GHz		5.8	_	mΑ
Current consumption in receive	I _{RX_LISTEN}	125 kbit/s, 2GFSK, f = 2.4 GHz		5.4		mΑ
mode, listening for packet,		500 kbit/s, 2GFSK, f = 2.4 GHz		5.4		mA
VSCALE1, EM1P		1 Mbit/s, 2GFSK, f = 2.4 GHz		5.0		mA
		2 Mbit/s, 2GFSK, f = 2.4 GHz		5.8		mA
Current consumption in transmit mode	I _{TX}	f = 2.4 GHz, CW, 10 dBm output power		23.4		mA

RF Transmitter General Characteristics for the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: VDD = VDDIO = 3.0 V, DC-DC in regulation. RF center frequency 2.45 GHz. $T_A = 25$ °C.

Table 7: RF Transmitter General Characteristics for the 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
RF tuning frequency range	F _{RANGE}		2402	_	2480	MHz
Maximum TX power	POUT _{MAX}	10 dBm	_	10.0		dBm
		0 dBm	<u> </u>	-1.4		dBm
Minimum active TX power	POUT _{MIN}	10 dBm	_	-29.1	_	dBm
		0 dBm	_	-24.9		dBm
Output power step size	POUT _{STEP}	0 dBm	0.1	0.6	10	dB
	-	10 dBm, -5 dBm < Output power < 0 dBm	0.2	0.7	1.7	dB
		10 dBm, 0 dBm < Output power < 10 dBm	0.04	0.2	0.8	dB
Output power variation vs supply voltage variation,	POUT _{VAR_V}	10 dBm output power with VDD voltage swept from 1.8 V to 3.8 V	_	0.02	_	dB
frequency = 2450 MHz		0 dBm output power with VDD voltage swept from 1.8 V to 3.8 V	_	0.06	_	dB
Output power variation vs temperature, Frequency = 2450 MHz	POUT _{VAR_T}	0 dBm, (-40 to +105 °C)	_	1.1	_	dB
Output power variation over	$POUT_{VAR_{F}}$	10 dBm	_	0.6	_	dB
the RF tuning frequency range		0 dBm	_	0.07	_	dB

Hong Kong: +852-2762-4823

4.6 RF Receiver General Characteristics for the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: VDD = VDDIO = 3.0 V, DC-DC in regulation. RF center frequency 2.45 GHz. $T_A = 25^{\circ}C$.

Table 8: RF Receiver General Characteristics for the 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
RF tuning frequency range	F _{RANGE}		2402		2480	MHz

4.7 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate

Unless otherwise indicated, typical conditions are: VDD = VDDIO = 3.0 V, DC-DC in regulation. RF center frequency 2.45 GHz. $T_A = 25^{\circ}C$.

Table 9: RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Rx Max Strong Signal Input Level for 0.1% BER	RX _{SAT}	Signal is reference signal ¹		10	_	dBm
Sensitivity	SENS	Signal is reference signal, 37 byte payload ¹	_	-97		dBm
		Signal is reference signal, 255 byte payload ¹	_	-95.4	_	dBm
		With non-ideal signals ²		-95.0	_	dBm
Signal to co-channel interferer	C/I _{CC}	(see notes) ^{1 3}	_	8.7	_	dB
N ± 1 Adjacent channel selectivity	C/I ₁	Interferer is reference signal at +1 MHz offset ^{1 4 3 5}	_	-5.4	_	dB
		Interferer is reference signal at -1 MHz offset ^{1 4 3 5}	_	-5.3	_	dB
N ± 2 Alternate channel selectivity	C/I ₂	Interferer is reference signal at +2 MHz offset ^{1 4 3 5}	_	-40.9	_	dB
		Interferer is reference signal at -2 MHz offset ^{1 4 3 5}	_	-39.7	_	dB
N ± 3 Alternate channel selectivity	C/I ₃	Interferer is reference signal at +3 MHz offset ^{1 4 3 5}	_	-45.5	_	dB
		Interferer is reference signal at -3 MHz offset ^{1 4 3 5}	_	-45.7	_	dB
Selectivity to image frequency	C/I _{IM}	Interferer is reference signal at image frequency with 1 MHz precision 15	_	-23.3	_	dB
Selectivity to image frequency ± 1 MHz	C/I _{IM_1}	Interferer is reference signal at image frequency +1 MHz with 1 MHz precision ¹	_	-40.9	_	dB
		Interferer is reference signal at image frequency -1 MHz with 1 MHz precision ¹⁵	_	-5.4	_	dB
Intermodulation performance	IM	n = 3 (see note ⁶)	_	-17.3	_	dBm
		·				

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:						

- 1.0.017% Bit Error Rate.
- 2. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1
- 3. Desired signal -67 dBm.
- 4. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.
- 5. With allowed exceptions.
- 6. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4

4.8 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate

Unless otherwise indicated, typical conditions are: VDD = VDDIO = 3.0 V, DC-DC in regulation. RF center frequency 2.45 GHz. $T_A = 25^{\circ}C$.

Table 10: RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Rx Max Strong Signal Input Level for 0.1% BER	RX _{SAT}	Signal is reference signal ¹		10	$\overline{}$	dBm
Sensitivity	SENS	Signal is reference signal, 37 byte payload ¹	_	-94.3		dBm
		Signal is reference signal, 255 byte payload ¹	_	-92.7	_	dBm
		With non-ideal signals ² 1	4	-92.5	_	dBm
Signal to co-channel interferer	C/I _{CC}	(see notes) ^{1 3}	_	8.6	_	dB
N ± 1 Adjacent channel selectivity	C/I ₁	Interferer is reference signal at +2 MHz offset ^{1 4 3 5}	_	-5.3	_	dB
		Interferer is reference signal at -2 MHz offset ^{1 4 3 5}	_	-5.8	_	dB
N ± 2 Alternate channel selectivity	C/I ₂	Interferer is reference signal at +4 MHz offset ^{1 4 3 5}	_	-42.2	_	dB
		Interferer is reference signal at -4 MHz offset 1 4 3 5	_	-44.2	_	dB
N ± 3 Alternate channel selectivity	C/I ₃	Interferer is reference signal at +6 MHz offset ^{1 4 3 5}	_	-48.1	_	dB
		Interferer is reference signal at -6 MHz offset 1 4 3 5	_	-50.2	_	dB
Selectivity to image frequency	C/I _{IM}	Interferer is reference signal at image frequency with 1 MHz precision ^{1 5}	_	-22.8	_	dB
Selectivity to image frequency ± 2 MHz	C/I _{IM_1}	Interferer is reference signal at image frequency +2 MHz with 1 MHz precision ^{1 5}	_	-42.2	_	dB
		Interferer is reference signal at image frequency -2 MHz with 1 MHz precision ¹	_	-5.3	-	dB
Intermodulation performance	IM	n = 3 (see note ⁶)	_	-18.3	_	dBm

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:						

- 1.0.017% Bit Error Rate.
- 2. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1
- 3. Desired signal -64 dBm.
- 4. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.
- 5. With allowed exceptions.
- 6. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4

4.9 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate

Unless otherwise indicated, typical conditions are: VDD = VDDIO = 3.0 V, DC-DC in regulation. RF center frequency 2.45 GHz. $T_A = 25^{\circ}C$.

Table 11: RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Rx Max Strong Signal Input Level for 0.1% BER	RX _{SAT}	Signal is reference signal ¹		10	\overline{C}	dBm
Sensitivity	SENS	Signal is reference signal, 37 byte payload ¹	_	-100.7	_	dBm
		Signal is reference signal, 255 byte payload ¹	_	-99.4	_	dBm
		With non-ideal signals ² 1	\	-98.4	_	dBm
Signal to co-channel interferer	C/I _{CC}	(see notes) ^{1 3}	_	2.7	_	dB
N ± 1 Adjacent channel selectivity	C/I ₁	Interferer is reference signal at +1 MHz offset ^{1 4 3 5}	_	-7.1	_	dB
		Interferer is reference signal at -1 MHz offset ^{1 4 3 5}	_	-7.4	_	dB
N ± 2 Alternate channel selectivity	C/I ₂	Interferer is reference signal at +2 MHz offset ^{1 4 3 5}	_	-46.8	_	dB
		Interferer is reference signal at -2 MHz offset ^{1 4 3 5}	_	-49.7	_	dB
N ± 3 Alternate channel selectivity	C/I ₃	Interferer is reference signal at +3 MHz offset ^{1 4 3 5}	_	-49.4	_	dB
		Interferer is reference signal at -3 MHz offset ^{1 4 3 5}	_	-54.5	_	dB
Selectivity to image frequency	C/I _{IM}	Interferer is reference signal at image frequency with 1 MHz precision 15	_	-49	_	dB
Selectivity to image frequency ± 1 MHz	C/I _{IM_1}	Interferer is reference signal at image frequency +1 MHz with 1 MHz precision ^{1 5}	_	-49.4	_	dB
		Interferer is reference signal at image frequency -1 MHz with 1 MHz precision ¹	_	-46.8	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:						

- 1.0.017% Bit Error Rate.
- 2. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1
- 3. Desired signal -72 dBm.
- 4. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.
- 5. With allowed exceptions.

4.10 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate

Unless otherwise indicated, typical conditions are: VDD = VDDIO = 3.0 V, DC-DC in regulation. RF center frequency 2.45 GHz. $T_A = 25^{\circ}C$.

Table 12: RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Rx Max Strong Signal Input Level for 0.1% BER	RX _{SAT}	Signal is reference signal ¹		10	_	dBm
Sensitivity	SENS	Signal is reference signal, 37 byte payload ¹		-105.1		dBm
		Signal is reference signal, 255 byte payload ¹	_	-104.7	_	dBm
		With non-ideal signals ²		-104.3		dBm
Signal to co-channel interferer	C/I _{CC}	(see notes) ^{1 3}	-(0.9	_	dB
N ± 1 Adjacent channel selectivity	C/I ₁	Interferer is reference signal at +1 MHz offset ^{1 4 3 5}	_	-12.4	_	dB
		Interferer is reference signal at -1 MHz offset ¹ 4 3 5	_	-12.8	_	dB
N ± 2 Alternate channel selectivity	C/l ₂	Interferer is reference signal at +2 MHz offset ^{1 4 3 5}	_	-52.6	_	dB
		Interferer is reference signal at -2 MHz offset ¹ 4 3 5	_	-55.5	_	dB
N ± 3 Alternate channel selectivity	C/I ₃	Interferer is reference signal at +3 MHz offset ^{1 4 3 5}	_	-53.8	_	dB
		Interferer is reference signal at -3 MHz offset ¹ 4 3 5	_	-60	_	dB
Selectivity to image frequency	C/I _{IM}	Interferer is reference signal at image frequency with 1 MHz precision 15	_	-53	_	dB
Selectivity to image frequency ± 1 MHz	C/I _{IM_1}	Interferer is reference signal at image frequency +1 MHz with 1 MHz precision ^{1 5}	_	-53.8	_	dB
		Interferer is reference signal at image frequency -1 MHz with 1 MHz precision 15	_	-52.6	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit

Note:

- 1. 0.017% Bit Error Rate.
- 2. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1
- 3. Desired signal -79 dBm.
- 4. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.
- 5. With allowed exceptions.

4.11 High-Frequency Crystal

Table 13: High-Frequency Crystal

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXTAL}		_	39	_	MHz
Initial calibrated accuracy	ACC_{HFXTAL}		-5	_	+5	ppm
Temperature drift	DRIFT _{HFXTAL}	Across specified temperature range	-30	_	30	ppm

4.12 Low-Frequency Crystal Oscillator

Table 14: Low Frequency Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	F _{LFXO}		_	32.768	_	kHz
Supported Crystal equivalent	ESR _{LFXO}	GAIN = 0	,		80	kΩ
series resistance (ESR)		GAIN = 1 to 3		_	100	kΩ
Supported range of crystal	C _{L_LFXO}	GAIN = 0	4	_	6	pF
load capacitance ¹		GAIN = 1	6		10	pF
		GAIN = 2 (see note ²)	10	_	12.5	pF
The state of the s		GAIN = 3 (see note ²)	12.5	_	18	pF
Current consumption	I _{CL12p5}	ESR=70 k Ω , C _L =12.5pF, GAIN ³ = 2, AGC ⁴ = 1	_	294	_	nA
Startup Time	T _{STARTUP}	ESR=70 k Ω , C _L =7pF, GAIN ³ = 1, AGC ⁴ = 1	_	52	_	ms
On-chip tuning cap step size	SS _{LFXO}		_	0.26	_	pF
On-chip tuning capacitor value at minimum setting ⁵	C_{LFXO_MIN}	CAPTUNE = 0	_	5.2	_	pF
On-chip tuning capacitor value at maximum setting ⁵	C_{LFXO_MAX}	CAPTUNE = 0x4F	_	26.2	_	pF

Note:

- 1. Total load capacitance seen by the crystal
- 2. Crystals with a load capacitance of greater than 12 pF require external load capacitors.
- 3. In LFXO_CAL Register
- 4. In LFXO_CFG Register
- 5. The effective load capacitance seen by the crystal will be $C_{LFXO}/2$. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal

4.13 Precision Low Frequency RC Oscillator (LFRCO)

Table 15: Precision Low Frequency RC Oscillator (LFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Nominal oscillation frequency	F _{LFRCO}		_	32.768	_	kHz
Frequency accuracy	F _{LFRCO_ACC}	Normal mode	-3		3	%
		Precision mode ¹ , across operating temperature range ²	-500	_	500	ppm
Startup time	t _{STARTUP}	Normal mode		204	_	μs
		Precision mode ¹		11.7	_	ms
Current consumption	I _{LFRCO}	Normal mode		189.9		nA
		Precision mode ¹ , T = stable at 25 °C ³	_	649.8	_	nA

Note:

- 1. The LFRCO operates in high-precision mode when CFG_HIGHPRECEN is set to 1. High-precision mode is not available in EM4.
- 2. Includes ± 40 ppm frequency tolerance of the HFXO crystal.
- 3. Includes periodic re-calibration against HFXO crystal oscillator.

4.14 GPIO Pins

Table 16: GPIO Pins

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Leakage current	I _{LEAK_IO}	MODEx = DISABLED, VDD = VDDIO = 3.0 V	₹	2.5	_	nA
Input low	V_{IL}	Any GPIO pin			0.3*VDDIO	V
voltage ¹		RESETn	<u> </u>		0.3*DVDD	V
Input high	V_{IH}	Any GPIO pin	0.7*VDDIO	_	_	V
voltage ¹		RESETn	0.7*DVDD	_		V
Hysteresis	V _{HYS}	Any GPIO pin	0.05*VDDIO			V
of input voltage		RESETn	0.05*DVDD	_	_	V
Output high voltage	V _{OH}	Sourcing 20 mA, VDDIO = 3.0 V	0.8*VDDIO	_	_	V
Output low voltage	V _{OL}	Sinking 20 mA, VDDIO = 3.0 V	_	_	0.2*VDDIO	V
GPIO rise time	T_{GPIO_RISE}	VDDIO = 3.0 V, C _{load} = 50pF, SLEWRATE = 4, 10% to 90%	_	8.4	_	ns
GPIO fall time	T _{GPIO_FALL}	VDDIO = 3.0 V , $C_{load} = 50 \text{pF}$, SLEWRATE = 4 , 90% to 10%	_	7.1	_	ns
Pull up/down resistance ²	R _{PULL}	Any GPIO pin. Pull-up to VDDIO: MODEn = DISABLE DOUT=1. Pull-down to GND: MODEn = WIREDORPULLDOWN DOUT = 0.	35	44	55	kΩ
		RESETn pin. Pull-up to DVDD	35	44	55	kΩ

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Maximum filtered glitch width	T _{GF}	MODE = INPUT, DOUT = 1	_	27	<u> </u>	ns

Note:

- 1. GPIO input thresholds are proportional to the VDDIO pin. RESETn input thresholds are proportional to the internal DVDD supply, which is generated by the DC-DC converter. DVDD is equal to 1.8 V when DC-DC is active and bypassed to VDD when DC-DC is inactive.
- 2. GPIO pull-ups connect to VDDIO supply, pull-downs connect to GND. RESETn pull-up connects to internal DVDD supply, which is generated by the DC-DC converter. DVDD is equal to 1.8 V when DC-DC is active and bypassed to VDD when DC-DC is inactive.

4.15 Microcontroller Peripherals

The set of peripherals available in Lyra 24S modules includes:

- 12-bit 1 Msps ADC
- Analog Comparators
- 16-bit and 32-bit Timers/Counters
- 24-bit Low Energy Timer for waveform generation
- 32-bit Real Time Counter
- USART (UART/SPI/SmartCards/IrDA/I2S)
- I²C peripheral interfaces
- 12 Channel Peripheral Reflex System

Details on their electrical performance can be found in the relevant portions of Section 4 of the EFR32BG24 SoC datasheet.

To learn which GPIO ports provide access to every peripheral, consult the Digital Peripheral Connectivity and Analog Peripheral Connectivity tables.

https://www.lairdconnect.com/

4.16 Antenna Radiation and Efficiency for Lyra 24S Integrated Antenna

Typical Lyra 24S radiation patterns for the built-in antenna under optimal operating conditions are plotted in the figures that follow. Antenna gain and radiation patterns have a strong dependence on the size and shape of the application PCB the module is mounted on, as well as on the proximity of any mechanical design to the antenna.

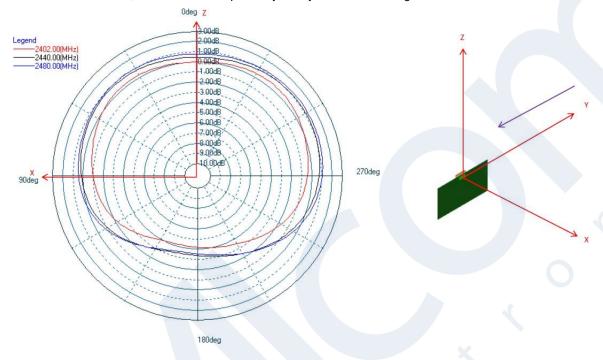


Figure 4: Typical 2D Antenna Radiation Patterns - Phi 0° (Side View) Gain (dBi)

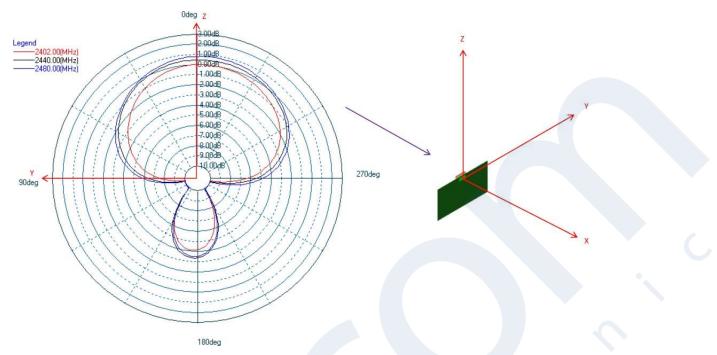


Figure 5: Typical 2D Antenna Radiation Patterns - Phi 90° (Top View) Gain (dBi)

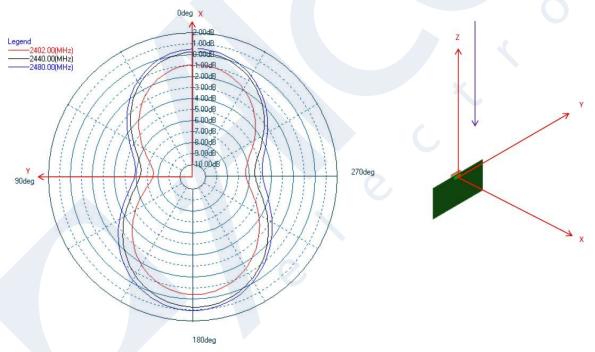


Figure 6: Typical 2D Antenna Radiation Patterns - Theta 90° (Front View) Gain (dBi)

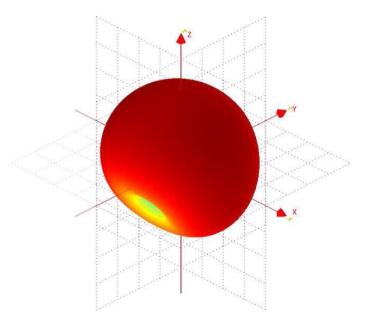


Figure 7: 3D Radiation Pattern at 2440 MHz

5 REFERENCE DIAGRAMS

Network Co-Processor (NCP) Application with UART Host 5.1

The Lyra 24S can be controlled via the UART interface as a peripheral to an external host processor. Typical power supply, programming/debug interface, and host interface connections are shown in the figure below. For more details, see AN958: Debugging and Programming Interfaces for Custom Designs.

Note: For boot pin, see section 5.3 Boot.

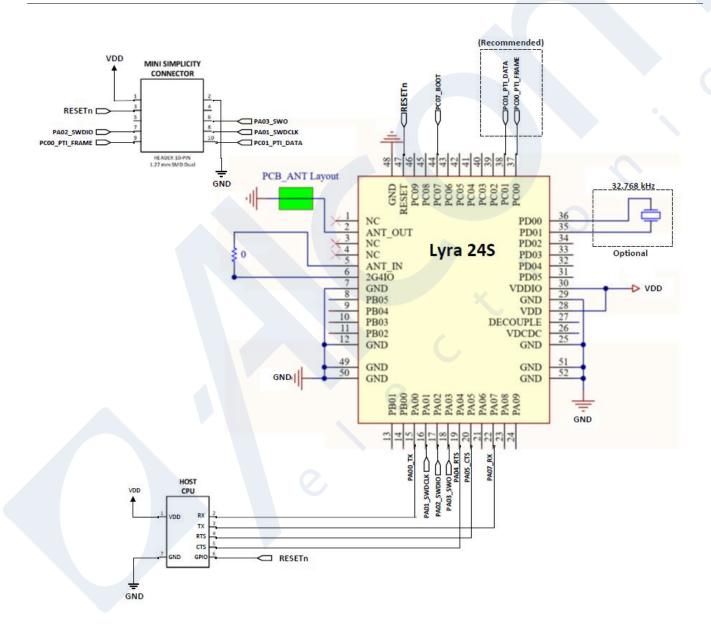


Figure 8: UART NCP Configuration

5.2 SoC Application

The Lyra 24S can be used in a stand-alone SoC configuration without an external host processor. Typical power supply and programming/debug interface connections are shown in the figure below. For more details, see AN958: Debugging and Programming Interfaces for Custom Designs.

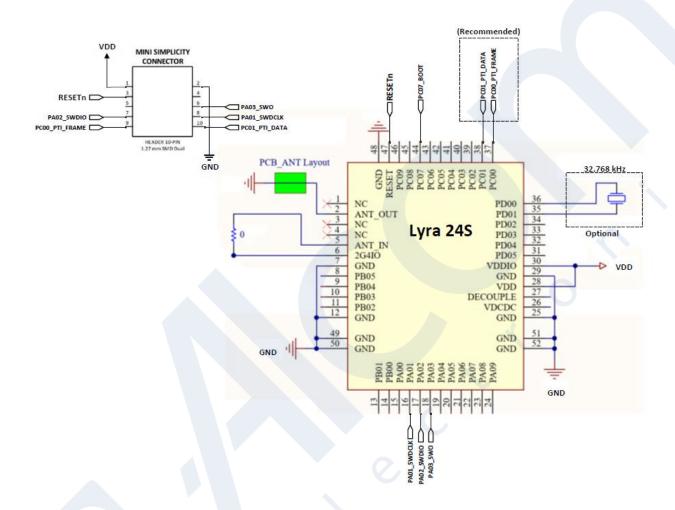


Figure 9: Standalone SoC Configuration

5.3 Boot

The BOOT pin is used to determine when execution of the bootloader is required. Upon reset, execution of the bootloader begins. The state of the BOOT pin is read immediately upon start-up of the bootloader. If LOW, execution of the bootloader continues, facilitating firmware update via the UART. If the BOOT pin is HIGH, the bootloader will stop execution and pass control to the main application firmware.

6 **PIN DEFINITIONS**

6.1 **Module Pinout**

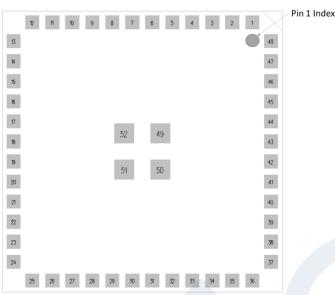


Figure 10: Lyra 24S Module Pinout (Top View)

For GPIO pin to peripheral assignment in AT firmware, see User Guide - AT Interface Application - Lyra 24 Series.

The next table shows the Lyra 24S pinout and general descriptions for each pin. Refer to Alternate Pin Functions, Analog Peripheral Connectivity, and Digital Peripheral Connectivity for details on functions and peripherals supported by each GPIO

Table 17: Module Pinout

Table 17. WO	uuie i iii	out			
Pin Name	No.	Description	Pin Name	No.	Description
DNC	1	Do not connect	GND	52	GROUND
ANT OUT	2	Integral Ant Out	GND	51	GROUND
DNC	3	Do not connect	GND	50	GROUND
DNC	4	Do not connect	GND	49	GROUND
ANT IN	5	Integral Ant In	GND	48	GROUND
2G4IO	6	RF IN/OUT	RESETn ¹	47	RESET
GND	7	GROUND	PC09	46	GPIO
PB05	8	GPIO	PC08	45	GPIO
PB04	9	GPIO	PC07	44	GPIO
PB03	10	GPIO	PC06	43	GPIO
PB02	11	GPIO	PC05	42	GPIO
GND	12	GROUND	PC04	41	GPIO
PB01	13	GPIO	PC03	40	GPIO
PB00	14	GPIO	PC02	39	GPIO
PA00	15	GPIO	PC01	38	GPIO
PA01	16	GPIO	PC00	37	GPIO
PA02	17	GPIO	PD00	36	GPIO LF XTAL Output (Optional)

Pin Name	No.	Description	Pin Name	No.	Description
PA03	18	GPIO	PD01	35	GPIO LF XTAL Input (Optional)
PA04	19	GPIO	PD02	34	GPIO
PA05	20	GPIO	PD03	33	GPIO
PA06	21	GPIO	PD04	32	GPIO
PA07	22	GPIO	PD05	31	GPIO
PA08	23	GPIO	VDDIO	30	I/O power supply
PA09	24	GPIO	GND	29	GROUND
GND	25	GROUND	VDD	28	Power supply
VDCDC	26	Test pin (internal test usage)	DECOUPLE	27	Test pin (internal test usage)

6.2 Alternate Pin Functions

Some GPIOs support alternate functions like debugging, wake-up from EM4, external low frequency crystal access, etc. The following table shows both which module pins have alternate capabilities and the functions they support. Refer to the SoCs reference manual for more details.

Table 18: Alternate Pin Functions

Table 10	: Alternate Pin Functions		
GPIO		Alternate Functions	
PA00	IADC0.VREFP		
PA01	GPIO.SWCLK		
PA02	GPIO.SWDIO		
PA03	GPIO.SWV GPIO.TDO		
	GPIO.TRACEDATA0		
PA04	GPIO.TDI		
	GPIO.TRACECLK		
PA05	GPIO.TRACEDATA1		
	GPIO.EM4WU0		
PA06	GPIO.TRACEDATA2		
PA07	GPIO.TRACEDATA3		
PB00	VDAC0.VDAC_CH0_MAIN_OU TPUT		
PB01	GPIO.EM4WU3	VDAC0.VDAC_CH1_MAIN_OU TPUT	
PB02	VDAC1.VDAC_CH0_MAIN_OU TPUT		
PB03	GPIO.EM4WU4	VDAC1.VDAC_CH1_MAIN_OU TPUT	
PC00	GPIO.EM4WU6		
PC01	GPIO.EFP_TX_SDA		
PC02	GPIO.EFP_TX_SCL		
PC05	GPIO.EFP_INT		
	GPIO.EM4WU7		
PC07	GPIO.EM4WU8	GPIO.THMSW_EN	GPIO.THMSW_HALFSWITCH
PD00	LFXO.LFXTAL_O		
PD01	LFXO.LFXTAL_I		
	LFXO.LF_EXTCLK		
PD02	GPIO.EM4WU9		

6.3 Analog Peripheral Connectivity

Many analog resources are routable and can be connected to numerous GPIO's. The table below indicates which peripherals are available on each GPIO port. When a differential connection is being used, positive inputs are restricted to the EVEN pins and negative inputs are restricted to the ODD pins. When a single ended connection is being used positive input is available on all pins. See the SoC's Reference Manual for more details on the ABUS and analog peripherals.

Table 19: Analog Peripheral Connectivity

Peripheral	Signal	PA		PE	3	PC		PD	
		EVEN	ODD	EVEN	ODD	EVEN	ODD	EVEN	ODD
ACMP0	ANA_NEG	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	ANA_POS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ACMP1	ANA_NEG	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	ANA_POS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
IADC0	ANA_NEG	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	ANA_POS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
VDAC0	VDAC_CH0_ABUS_OUT- PUT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	VDAC_CH1_ABUS_OUT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
VDAC1	VDAC_CH0_ABUS_OUT- PUT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	VDAC_CH1_ABUS_OUT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

6.4 Digital Peripheral Connectivity

Many digital resources are routable and can be connected to numerous GPIOs. The table below indicates which peripherals are available on each GPIO port.

Table 20: DBUS Routing Table

Peripheral.Resource			PORT	
	PA	PB	PC	PD
ACMP0.DIGOUT	Available	Available	Available	Available
ACMP1.DIGOUT	Available	Available	Available	Available
CMU.CLKIN0	V 0		Available	Available
CMU.CLKOUT0			Available	Available
CMU.CLKOUT1			Available	Available
CMU.CLKOUT2	Available	Available		
EUSARTO.CS	Available	Available		
EUSARTO.CTS	Available	Available		
EUSARTO.RTS	Available	Available		
EUSARTO.RX	Available	Available		
EUSARTO.SCLK	Available	Available		
EUSART0.TX	Available	Available		
EUSART1.CS	Available	Available	Available	Available
EUSART1.CTS	Available	Available	Available	Available
EUSART1.RTS	Available	Available	Available	Available
EUSART1.RX	Available	Available	Available	Available
EUSART1.SCLK	Available	Available	Available	Available
EUSART1.TX	Available	Available	Available	Available
FRC.DCLK			Available	Available

Peripheral.Resource			PORT	
FRC.DFRAME			Available	Available
FRC.DOUT			Available	Available
HFXO0.BUFOUT_REQ_IN_ASYNC	Available	Available		
12C0.SCL	Available	Available	Available	Available
12C0.SDA	Available	Available	Available	Available
12C1.SCL			Available	Available
12C1.SDA			Available	Available
KEYSCAN.COL_OUT_0	Available	Available	Available	Available
KEYSCAN.COL_OUT_1	Available	Available	Available	Available
KEYSCAN.COL_OUT_2	Available	Available	Available	Available
KEYSCAN.COL_OUT_3	Available	Available	Available	Available
KEYSCAN.COL_OUT_4	Available	Available	Available	Available
KEYSCAN.COL_OUT_5	Available	Available	Available	Available
KEYSCAN.COL_OUT_6	Available	Available	Available	Available
KEYSCAN.COL_OUT_7	Available	Available	Available	Available
KEYSCAN.ROW_SENSE_0	Available	Available		
KEYSCAN.ROW_SENSE_1	Available	Available		
KEYSCAN.ROW_SENSE_2	Available	Available		
KEYSCAN.ROW_SENSE_3	Available	Available		
KEYSCAN.ROW_SENSE_4	Available	Available		
KEYSCAN.ROW_SENSE_5	Available	Available		
LETIMER0.OUT0	Available	Available		
LETIMER0.OUT1	Available	Available		
MODEM.ANT0	Available	Available	Available	Available
MODEM.ANT1	Available	Available	Available	Available
MODEM.ANT_ROLL_OVER		C .	Available	Available
MODEM.ANT_RR0			Available	Available
MODEM.ANT_RR1			Available	Available
MODEM.ANT_RR2		/	Available	Available
MODEM.ANT_RR3			Available	Available
MODEM.ANT_RR4			Available	Available
MODEM.ANT_RR5	·		Available	Available
MODEM.ANT_SW_EN	0.		Available	Available
MODEM.ANT_SW_US			Available	Available
MODEM.ANT_TRIG			Available	Available
MODEM.ANT_TRIG_STOP			Available	Available
MODEM.DCLK	Available	Available		
MODEM.DIN	Available	Available		
MODEM.DOUT	Available	Available		
PCNT0.S0IN	Available	Available		
PCNT0.S1IN	Available	Available		
PRS.ASYNCH0	Available	Available		
	A !I - I - I -	Avoilable		
PRS.ASYNCH1	Available	Available		

Peripheral.Resource			PORT	
PRS.ASYNCH3	Available	Available		
PRS.ASYNCH4	Available	Available		
PRS.ASYNCH5	Available	Available		
PRS.ASYNCH6			Available	Available
PRS.ASYNCH7			Available	Available
PRS.ASYNCH8			Available	Available
PRS.ASYNCH9			Available	Available
PRS.ASYNCH10			Available	Available
PRS.ASYNCH11			Available	Available
PRS.ASYNCH12	Available	Available		
PRS.ASYNCH13	Available	Available		
PRS.ASYNCH14	Available	Available		
PRS.ASYNCH15	Available	Available		
PRS.SYNCH0	Available	Available	Available	Available
PRS.SYNCH1	Available	Available	Available	Available
PRS.SYNCH2	Available	Available	Available	Available
PRS.SYNCH3	Available	Available	Available	Available
RAC.LNAEN	Available	Available	Available	Available
RAC.PAEN	Available	Available	Available	Available
TIMER0.CC0	Available	Available	Available	Available
TIMER0.CC1	Available	Available	Available	Available
TIMER0.CC2	Available	Available	Available	Available
TIMER0.CDTI0	Available	Available	Available	Available
TIMER0.CDTI1	Available	Available	Available	Available
TIMER0.CDTI2	Available	Available	Available	Available
TIMER1.CC0	Available	Available	Available	Available
TIMER1.CC1	Available	Available	Available	Available
TIMER1.CC2	Available	Available	Available	Available
TIMER1.CDTI0	Available	Available	Available	Available
TIMER1.CDTI1	Available	Available	Available	Available
TIMER1.CDTI2	Available	Available	Available	Available
TIMER2.CC0	Available	Available		
TIMER2.CC1	Available	Available		
TIMER2.CC2	Available	Available		
TIMER2.CDTI0	Available	Available		
TIMER2.CDTI1	Available	Available		
TIMER2.CDTI2	Available	Available		
TIMER3.CC0			Available	Available
TIMER3.CC1			Available	Available
TIMER3.CC2			Available	Available
TIMER3.CDTI0			Available	Available
TIMER3.CDTI1			Available	Available
TIMER3.CDTI2			Available	Available
	Available	Available		

Peripheral.Resource			PORT	
TIMER4.CC1	Available	Available		
TIMER4.CC2	Available	Available		
TIMER4.CDTI0	Available	Available		
TIMER4.CDTI1	Available	Available		
TIMER4.CDTI2	Available	Available		
USARTO.CLK	Available	Available	Available	Available
USARTO.CS	Available	Available	Available	Available
USARTO.CTS	Available	Available	Available	Available
USARTO.RTS	Available	Available	Available	Available
USARTO.RX	Available	Available	Available	Available
USART0.TX	Available	Available	Available	Available

7 DESIGN GUIDELINES

7.1 Layout and Placement

For optimal performance of the Lyra 24S the following guidelines are recommended:

- Place the module 1.50 mm from the edge of the copper "keep-in" area at the middle of the long edge of the application PCB, as illustrated in Figure 11: Recommended Layout for Lyra 24S (Integrated Antenna).
- Copy the exact design from Figure 12: TOP Layer Antenna Layout with Coordinates with the values for coordinates A
 to L given in Table 21: Antenna Polygon Coordinates, Referenced to Center of Lyra 24S.
- Make a cutout in all lower layers aligned with the right edge and the bottom edge of the integral loop antenna as indicated by the red box in Figure 13: Antenna Clearance in Inner and Bottom Layers.
- Connect all ground pads directly to a solid ground plane in the top layer.
- Connect 2G4IO to ANT_IN through a 0-ohm resistor.
- The 0-ohm gives the ability to test conducted and to evaluate the antenna impedance in the design.
- Place ground vias as close to the ground pads of the Lyra 24S as possible.
- Place ground vias along the antenna loop right and bottom side.
- Place ground vias along the edges of the application board.
- Do not place plastic or any other dielectric material in contact with the antenna.
- A minimum clearance of 0.5 mm is advised.
- Solder mask, conformal coating and other thin dielectric layers are acceptable directly on top of the antenna region.
- Proper module placement and electrical connection should be ensured by measuring radiated output power from antenna.
- Impedance of the antenna can be verified by measuring S11 at ANT_IN pin that is corresponding antenna specification.
- With an external antenna, use a 50Ω trace to connect RF signal to the antenna, as it is illustrated in section Lyra 24S
 Module 50 Ohms RF Track Design for Connecting External Antenna with the Lyra 24S.

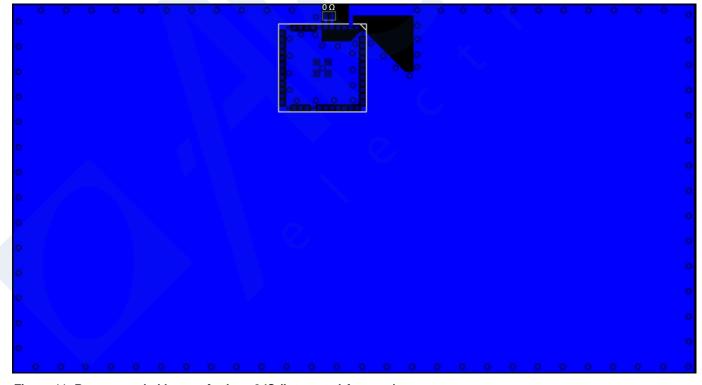


Figure 11: Recommended Layout for Lyra 24S (Integrated Antenna)

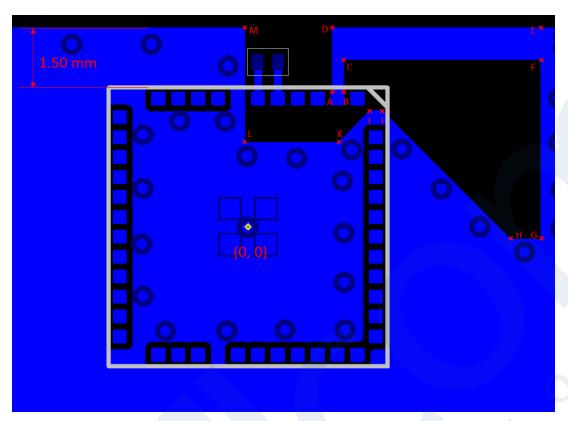


Figure 12: TOP Layer Antenna Layout with Coordinates

Table 21: Antenna Polygon Coordinates, Referenced to Center of Lyra 24S

Point	Coordinate
Α	(2.10, 3.30)
В	(2.40, 3.30
C	(2.40, 4.20)
D	(2.10, 5.00)
E	(7.35, 5.00)
F	(7.35, 4.20)
G	(7.35, -0.03)
Н	(6.59, -0.30)
1	(3.39, 2.90)
J	(3.05, 2.90)
K	(2.27, 2.13)
L	(-0.08, 2.13)
M	(-0.08, 5.00)

Tolerance for the coordinates is +/- 0.05 mm.



Figure 13: Antenna Clearance in Inner and Bottom Layers

7.2 Best Design Practices

The design of a good RF system relies on thoughtful placement and routing of the RF signals. The following guidelines are recommended:

- Place the Lyra 24S and antenna close to the center of the longest edge of the application board.
- Do not place any circuitry between the board edge and the antenna.
- Make sure to tie all GND planes in the application board together with as many vias as can be fitted.
- Generally, ground planes are recommended in all areas of the application board except in the antenna keep-out area shown in Figure 13: Antenna Clearance in Inner and Bottom Layers.
- Open-ended stubs of copper in the outer layer ground planes must be removed if they are more than 5 mm long to avoid radiation of spurious emissions.
- The width of the GND plane to the sides of the Lyra 24S will impact the efficiency of the on-board integral loop antenna.
- To achieve optimal performance, a GND plane width of 55 mm is recommended as seen on Figure 14: Illustration of Recommended Board Width.
- See Antenna Radiation and Efficiency for Lyra 24S Integrated Antenna for reference. Figure 15: Non-Recommended Layout Examples illustrates layout scenarios that will lead to severely degraded RF performance for the application board.

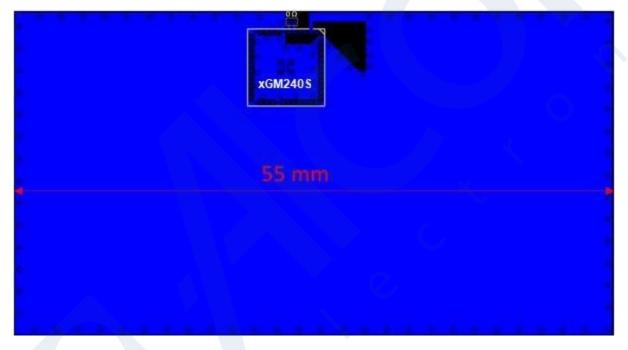


Figure 14: Illustration of Recommended Board Width

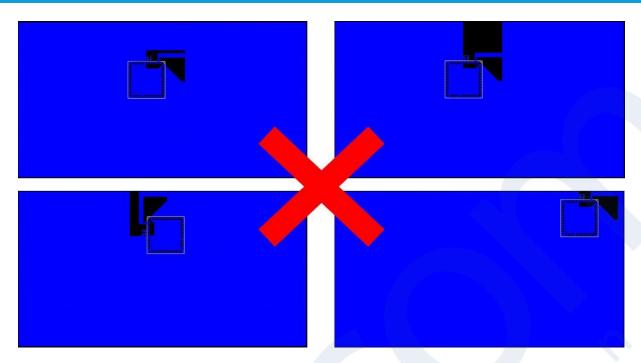


Figure 15: Non-Recommended Layout Examples

7.3 Radio Performance vs. Carrier Board Size

As with most applications, the **carrier board size is determined by the overall form factor or size of the additional circuitry**. The recommended carrier board width of 55 mm is thus not always possible in the end-application. If another form factor is required, the antenna performance of the integrated antenna will likely be compromised, but it may still be sufficiently good for providing the required link quality and range of the end-application. As can be seen in Figure 16: Efficiency of the Integrated Antenna as Function of the Carrier Board Size for Lyra 24S, the **best performance is achieved for a carrier board size of 55 mm x 30 mm**, with relatively constant performance for larger boards and rapidly declining performance for smaller boards.

WARNING: Any antenna tuning, and/or change of the loop dimensions, is likely to invalidate a modular certification, unless it is done to compensate for the degradation caused by a host board deviating in size from the manufacturer's best-case reference. Separate guidance might be provided by the manufacturer to address this particular kind of degradation, in which case a Permissive Change to the modular approval might not even become necessary: however, since this is evaluated on a case-by-case basis, please consult your certification house on the best approach.

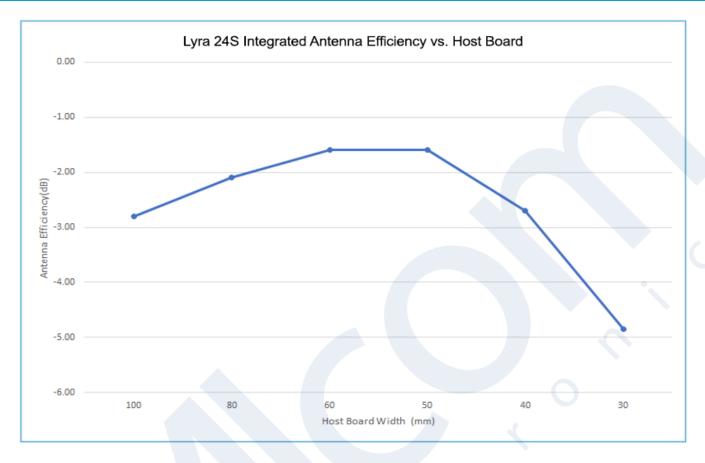


Figure 16: Efficiency of the Integrated Antenna as Function of the Carrier Board Size for Lyra 24S

7.4 Impact of Human Body and Other Materials in Close Proximity

Placing the module in contact with or very close to the human body will negatively impact antenna efficiency and reduce range.

Avoid placing plastic or any other dielectric material in close proximity to the antenna. Conformal coating and other thin dielectric layers are acceptable directly on top of the antenna region, but this will also negatively impact antenna efficiency and reduce range.

Any metallic objects in close proximity to the antenna will prevent the antenna from radiating freely. The minimum recommended distance of metallic and/or conductive objects is 10 mm in any direction from the antenna except in the directions of the application PCB ground planes.

7.5 Reset

The Lyra 24S can be reset by pulling the RESET line low, by the internal watchdog timer, or by software command. The reset state does not provide power saving functionality and it is not recommended as a means to conserve power.

7.6 Debug

See Silicon Labs' AN958: Debugging and Programming Interfaces for Custom Designs.

The Lyra 24S supports hardware debugging via 4-pin JTAG or 2-pin serial-wire debug (SWD) interfaces. It is recommended to expose the debug pins in your own hardware design for firmware update and debug purposes. The table below lists the required pins for JTAG and SWD debug interfacing, which are also presented in Alternate Pin Functions.

If JTAG interfacing is enabled, the module must be power cycled to return to a SWD debug configuration if necessary.

Table 22: Debug Pins

Pin Name	JTAG Signal	SWD Signal	Comments
PA04	TDI	N/A	This pin is disabled after reset. Once enabled the pin has a built-in pull-up.
PA03	TDO	N/A	This pin is disabled after reset.
PA02	TMS	SWDIO	Pin is enabled after reset and has a built-in pull-up.
PA01	TCK	SWCLK	Pin is enabled after reset and has a built-in pull-down.

7.7 Packet Trace Interface (PTI)

The Lyra 24S integrates a true PHY-level packet trace interface (PTI) peripheral that can capture packets non-intrusively to monitor and log device and network traffic without burdening processing resources in the module's SoC. The PTI generates two output signals that can serve as a powerful debugging tool, especially in conjunction with other hardware and software development tools available from Silicon Labs. The **PTI_DATA** and **PTI_FRAME** signals can be accessed through any GPIO on ports C and D (see **FRC.DOUT** and **FRC.DFRAME** peripheral resources in Pin Definitions).

7.8 Lyra 24S Module 50 Ohms RF Track Design for Connecting External Antenna with the Lyra 24S

Lyra 24S module can be used with external antennas (certified by Laird Connectivity), and requires a 50 Ohm RF trace (GCPW, that Grounded Coplanar Waveguide) to be designed to run from Lyra 24S module 2G4IO (pin6) to a RF antenna connector (IPEX MHF4) on host PCB. **The 50 Ohms RF track design and length MUST be copied** (as specified in this section). Lyra 24SP module GND pin7 used to support GCPW 50Ohm RF trace.

Checklist for SCH

Lyra 24S External antenna connection

- 1. Fit IPEX MHF4 RF connector (20449-001E), J3.
- Fit 0R resistor (position R940 in below SCH) between Lyra 24S module pin6 (2G4IO) and IPEX MHF4 RF connector (20449-001E).
- 3. Leave Lyra 24S module pin5 (ANT_IN) open circuited.

Lyra 24S Internal antenna connection

- Fit 0R resistor (position R939 in below SCH) between Lyra 24S module pin6 (2G4IO) and pin5 (ANT_IN).
- 2. Do not Fit R940 and J3 (positions in below SCH).
- 3. Lyra 24S pin5 (ANT_IN internal antenna PCB layout MUST be followed.

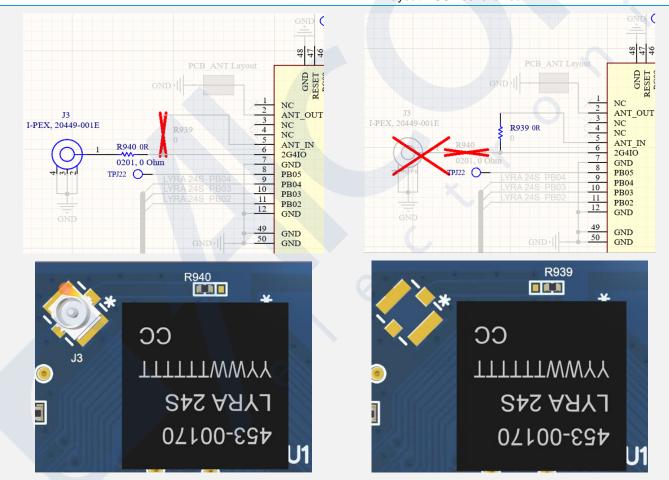
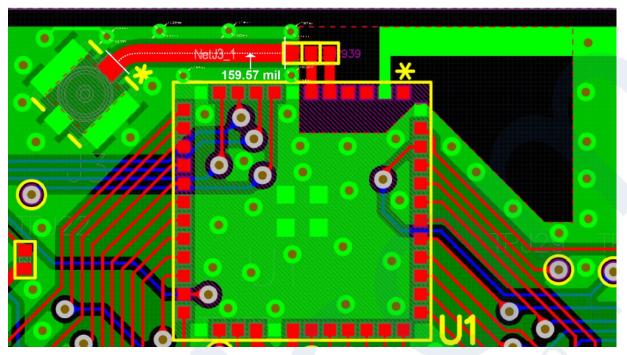



Figure 17: Lyra 24S for External antenna connection host PCB 50-Ohm RF trace schematic with MHF4 RF connector

Layer1 (RF Track and RF GND)

Layer2 (RF GND)

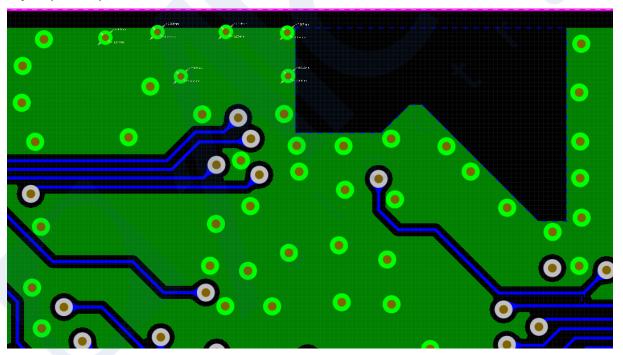
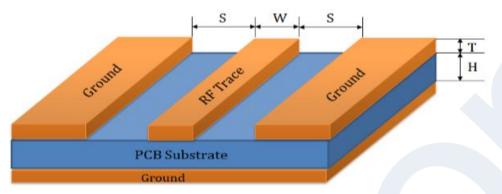



Figure 18: 50-Ohm RF trace design (Layer1 and Layer2) on DVK-Lyra 24S development board 453-00170-K1 (or host PCB) for use with Lyra 24S (453-00170) module

Checklist for PCB:

- MUST use a 50-Ohm RF trace (GCPW, that is Grounded Coplanar Waveguide) from 2F4IO (pin6) of the Lyra 24S module (453-00170) to RF antenna connector (IPEX MHF4 Receptable (MPN: 20449-001E)) on host PCB.
- To ensure regulatory compliance, MUST follow exactly the following considerations for 50-Ohms RF trace design and test verification:

	Thickne	ess	Dielectric	
	mil	mm	Constant Er	
Solder Mask	1.0	0.025	3.5	
Layer1 Copper 1oz+plating	1.5	0.038		
Core	57.60	1.463	4.2	Stack up for 50 Ohms GCPW
Layer2 Copper 1oz+plating	1.5	0.038		RF Track.
Solder Mask	1.0	0.025	3.5	
Total	62.6	1.59		X

Figure 19: Lyra 24P development board PCB stack-up and 50-Ohms Grounded CPW RF trace design using GND on L1 and L2

Note 1: The plating (ENIG) above base 1 ounce copper is not listed, but plating expected to be ENIG.

- The 50-Ohms RF trace design MUST be Grounded Coplanar Waveguide (GCPW) with
 - Layer1 RF track width (W) of 20 mil and
 - Layer1 gap (S) to GND of 5 mil and where the
 - Layer1 to Layer 2 dielectric thickness (H) MUST be 57.6 mil (dielectric constant Er 4.2).
 - Further the Layer1 base copper must be 1-ounce base copper (that is 1.5 mil) plus the plating and
 - Layer1 MUST be covered by solder mask of 1.0 mil thickness (dielectric constant Er 3.5).
- The 50-Ohms RF trace design MUST follow the PCB stack-up shown in Figure 19. (Layer1 to Layer2 thickness MUST be identical to the Lyra 24S development board).
- The 50-Ohms RF track should be a controlled-impedance trace e.g., ±10%.
- The 50-Ohms RF trace length MUST be identical (as seen in Figure 18) (159.57mil) to that on the Lyra 24S development board from Lyra 24S module 2G4IO RF pad (pin6) to the RF connector IPEX MHF4 Receptable (MPN: 20449-001E).
- Place GND vias regularly spaced either side of 50-Ohms RF trace to form GCPW (Grounded coplanar waveguide) transmission line as shown in Figure 18 and use Lyra 24S module GND pin7.
- Use spectrum analyzer to confirm the radiated (and conducted) signal is within the certification limit.

7.9 External Antenna Integration with the Lyra 24S Module 453-00170

Please refer to the Lyra 24S Regulatory Information Guide for details on using Lyra 24S module with external antennas in each regulatory region. The Lyra 24S has been designed to operate with the below external antennas (with a maximum gain of 2.0dBi). The required antenna impedance is 50 ohms. See Table 23. External antennas improve radiation efficiency.

Table 23: External antennas for the Lyra 24S

		Laird We		Weight Dimensions			Peak Gain	
Manufacturer Model Connectivity (g)	(mm)	Туре	Connector	2400-2500 MHz	2400-2480 MHz			
Laird Connectivity	NanoBlue	EBL2400A1- 10MH4L	2	44.45 x 12.7 x 0.81	PCB Dipole	IPEX MHF4	2 dBi	-
Laird Connectivity	FlexPIFA	001-0022	1.13	40.1 x 11.0 x 2.5	PIFA	IPEX MHF4	·	2 dBi
Mag Layers	EDA-8709- 2G4C1-B27-CY	0600-00057	NA	NA	Dipole	IPEX MHF4	2 dBi	-
Laird Connectivity	mFlexPIFA	EFA2400A3S- 10MH4L	1.8	25.4 × 23.4 × 2.5	PIFA	IPEX MHF4	- <	2 dBi

8 PACKAGE SPECIFICATIONS

8.1 Package Outline

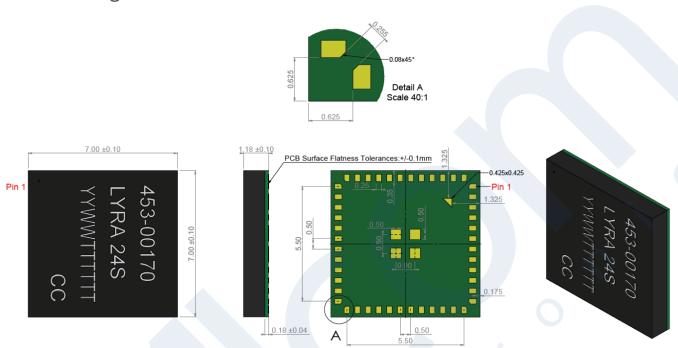
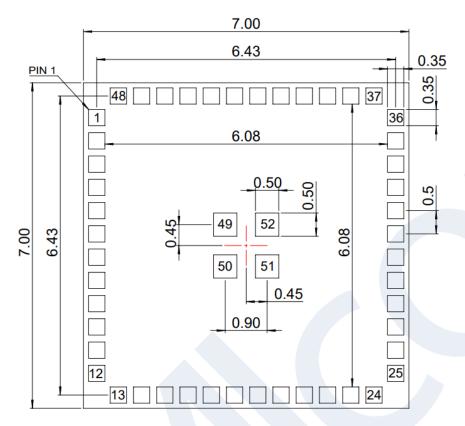



Figure 20: Top, Bottom and side views

https://www.lairdconnect.com/

8.2 PCB Land Pattern

TOP VIEW

Figure 21: Recommended Land Pattern for Modules with a Built-in Antenna

Note:

- 4. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 5. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 6. This Land Pattern Design is based on IPC-SM-782 guidelines.
- 7. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.
- 8. All pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60um minimum, all the way around the pad.
- A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 10. The stencil thickness should be 0.125mm (5 mils).
- 11. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 12. A No-Clean, Type-3 solder paste is recommended.
- 13. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different parameters and fine tune their SMT process as required for their application and tooling.

8.3 Package Marking

Figure 22: Lyra 24S Top Marking

Table 24: Top Marking Definition

Part Number	Line 1 Marking	Line 2 Marking	Line 3 Marking	Line 4 Marking
453-00170	453-00170	LYRA 24S	YYWWTTTTTT	CC
			See Note 1	See Note 2

Note:

- 1. YY = Year. WW = Work Week, TTTTTTT = Trace Code
- 2. Country of Origin ISO Code Abbreviation.

9 SOLDERING RECOMMENDATIONS

9.1 Reflow for lead Free Solder Paste

- Optimal solder reflow profile depends on solder paste properties and should be optimized as part of an overall process development.
- It is important to provide a solder reflow profile that matches the solder paste supplier's recommendations.
- Temperature ranges beyond that of the solder paste supplier's recommendation could result in poor solderability.
- All solder paste suppliers recommend an ideal reflow profile to give the best solderability.

9.2 Recommended Reflow Profile for lead Free Solder Paste

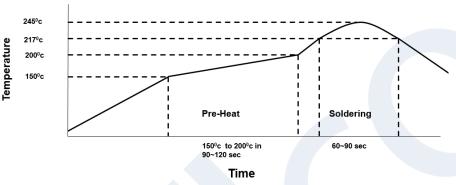


Figure 23: Recommended Reflow Profile

10 MISCELLANEOUS

10.1 Cleaning

In general, cleaning the populated modules is strongly discouraged. Residuals under the module cannot be easily removed with any cleaning process.

- Cleaning with water can lead to capillary effects where water is absorbed into the gap between the host board and the module. The combination of soldering flux residuals and encapsulated water could lead to short circuits between neighboring pads. Water could also damage any stickers or labels.
- Cleaning with alcohol or a similar organic solvent will likely flood soldering flux residuals into the RF shield, which is not
 accessible for post-washing inspection. The solvent could also damage any stickers or labels.
- Ultrasonic cleaning could damage the module permanently.

10.2 Rework

The Lyra 24P module can be unsoldered from the host board if the Moisture Sensitivity Level (MSL) requirements are met as described in this datasheet.

Never attempt a rework on the module itself, i.e. replacing individual components. Such actions terminate warranty coverage.

10.3 Handling and Storage

10.3.1 Handling

The Lyra 24P module contain a highly sensitive electronic circuitry. Handling without proper ESD protection may damage the module permanently.

10.3.2 Moisture Sensitivity Level (MSL)

Per J-STD-020, devices rated as MSL 4 and not stored in a sealed bag with desiccant pack should be baked prior to use.

Devices are packaged in a Moisture Barrier Bag with a desiccant pack and Humidity Indicator Card (HIC). Devices that will be subjected to reflow should reference the HIC and J-STD-033 to determine if baking is required.

If baking is required, refer to J-STD-033 for bake procedure.

10.3.3Storage

Per J-STD-033, the shelf life of devices in a Moisture Barrier Bag is 12 months at <40C and <90% room humidity (RH).

Do not store in salty air or in an environment with a high concentration of corrosive gas, such as Cl2, H2S, NH3, SO2, or NOX. Do not store in direct sunlight.

The product should not be subject to excessive mechanical shock.

10.3.4Repeated Reflow Soldering

Only a single reflow soldering process is encouraged for host boards.

https://www.lairdconnect.com/

11 TRAY AND REEL

Lyra 24S modules are delivered to the customer in Tray or reel. Find the packaging dimensions below. All dimensions are given in mm unless otherwise indicated.

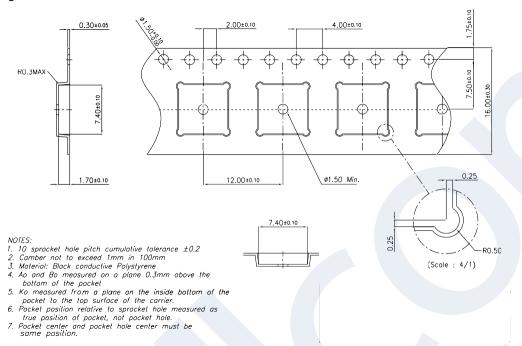


Figure 24: Carrier Tape Dimensions

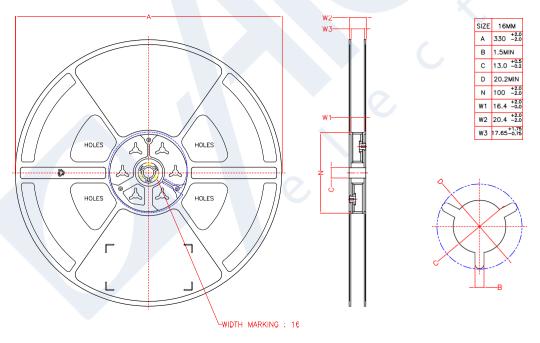


Figure 25: Reel Dimensions

12 RELIABILITY TEST

12.1 Climatic And Dynamic

Table 25: Climatic and Dynamic Tests and Results

Table 25: Climati	able 25: Climatic and Dynamic Tests and Results						
Test Name	Test Condition	Qualification	LoT ID or Start	Fail/Pass or End	Notes	Summary	Status
Test Group A – A	accelerated Environment Stress	Tests					
ТНВ	JA101 85°C, 85%RH Vcc=3.8V, 1000 hours	3 lots, N=>25	Q048531 Q048715 Q048533	0/25 0/33 0/25	1 1 1	3 lots 0/83	Pass
Temp Cycle	JA104 Cond C: -65°C to 150°C 500 cycles	3 lots, N=>25	Q048534 Q048535 Q048526	0/25 0/25 0/25	1 1 1	3 lots 0/75	Pass
HTSL	JA103 150°C, 1000hr	3 lots, N=>25	Q048444 Q048529 Q048530	0/25 0/25 0/25	1 1 1	3 lots 0/75	Pass
Test Group B - A	Accelerated Lifetime Simulation	Tests					
HTOL	JA108 TJ ≥ 125°C, Dynamic Vcc=3.8V, 1000 hours	3 lots, N=>77	Q048618 Q049010 Q048287 Q049006 Q048200 Q049005	0/55 0/32 0/58 0/20 0/49 0/55	2 2 2 2 2 2 2	6 lots 0/269	Pass
LTOL	JA108 TA = -10°C, Dynamic Vcc=3.8V, 1000 hours	1 lot, N=>32	Q042871	0/59	2	1 lot 0/59	Pass
ELFR	JA108 TJ ≥ 125°C, Dynamic Vcc=3.8V, 48 hours	3 lots, N=>500	Q048286 Q049476 Q048085 Q049007	0/494 0/6 0/504 0/534	2 2 2 2	4 lots 0/1538	Pass
NVM Endurance, Retention and Operating Life	JESD22-A117 25°C 500 hours	3 lots, N=>39	Q048257 Q048332 Q048620	0/44 0/44 0/44	2 2 2	3 lots 0/132	Pass
NVM Endurance, Retention and Operating Life	JESD22-A117 + JESD22-A103 150°C, 1000 hours	3 lots, N=>39	Q048331 Q048262 Q048621	0/44 0/44 0/44	2 2 2	3 lots 0/132	Pass
Test Group E - E	Electrical Verification						
ESD-HMB	JS-001	1 lot, N=>3	Q048512			2.5 kV	Class 2
ESD-CDM	JS-002	1 lot, N=>3	Q049478		3	TC 250	Class C1
Latch Up	JESD78 ±100mA; Overvoltage=3.8V	1 lot, N=>3	Q048513 Q048509	25 °C 105 °C			Pass

Notes:

- 1. Parts are Pre-conditioned at MSL 3 / 260°C
- 2. Leverage on die family qualification data (EFR32xG24 series)
- Device passed at 400 V

12.2 Reliability MTBF Prediction

Reliability Prediction Approach

- Apply Telcordia SR-232 Issue 3 Parts Count calculation
- Confidence Level 90%
- Quality Level II

Table 26: MTBF Prediction

Lyra 24S	40C	105C	
FIT (10 ⁻⁹)	58	1092	
MTBF (Mhours)	17	0.9	

13 REGULATORY

13.1 Regulatory information

Note: For complete regulatory information, refer to the Lyra 24S Regulatory Information document which is also available from the Lyra 24 Series Bluetooth 5.3 Solutions Product Page.

The Lyra 24S holds current certifications in the following countries:

Table 27: Lyra 24S Regulatory Information

Country/Region	Regulatory ID
USA (FCC)	SQG-LYRA24S
Canada (ISED)	3147A-LYRA24S
UK (UKCA)	N/A
EU	N/A
Japan (MIC)	201-230070
Korea (KC)	R-C-L8C-LYRA24S
Australia (AS)	N/A
New Zealand (NZS)	N/A

13.2 Maximum Regulatory Certified RF TX Power per Country (TBD)

AT firmware implements maximum RF TX power settings per country highlighted in this section.

Customers developing with **C Code** – Full software development with Silicon Labs SDK and Toolchain, MUST implement the maximum RF TX power settings per country and other parameters mentioned in this section.

To be defined.

14 BLUETOOTH SIG QUALIFICATION

14.1 Overview

The Lyra 24P Series module is listed on the Bluetooth SIG website as a qualified End Product, using the combination of a RF-PHY, LL and Host Stack Components.

Table 28: Bluetooth SIG Qualification

Design Name	Owner	Declaration ID	Reference QDID	Link to listing on the SIG website
Lyra 24P	Laird Connectivity	TBD	TBD	TBD

14.1.1 Referenced Qualified Components

Table 29: Referenced Qualified Components

Design Name	Owner	Reference QDID	Link to listing on the SIG website
EFR32BG24 and EFR32MG24 RF- PHY	Silicon Laboratories	TBD	TBD
Wireless Gecko Link Layer	Silicon Laboratories	TBD	TBD
Wireless Gecko Host	Silicon Laboratories	TBD	TBD

It is a mandatory requirement of the Bluetooth Special Interest Group (SIG) that every product implementing Bluetooth technology has a Declaration ID. Every Bluetooth design is required to go through the qualification process, even when referencing a Bluetooth Design that already has its own Declaration ID. The Qualification Process requires each company to registered as a member of the Bluetooth SIG – https://www.bluetooth.com/

The following link provides a link to the Bluetooth Registration page: https://www.bluetooth.org/login/register/

For each Bluetooth Design, it is necessary to purchase a Declaration ID. This can be done before starting the new qualification, either through invoicing or credit card payment. The fees for the Declaration ID will depend on your membership status, please refer to the following webpage:

https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-listing-fees/

For a detailed procedure of how to obtain a new Declaration ID for your design, please refer to the following SIG document:

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=283698&vId=317486

https://www.lairdconnect.com/

15 ADDITIONAL INFORMATION

Please contact your local sales representative or our support team for further assistance:

Headquarters Laird Connectivity

50 S. Main St. Suite 1100 Akron, OH 44308 USA

Phone Americas: +1-800-492-2320

Europe: +44-1628-858-940 Hong Kong: +852-2762-4823

Website www.lairdconnect.com/

Technical Support www.lairdconnect.com/resources/support

Sales Contact www.lairdconnect.com/contact

Note: Information contained in this document is subject to change.

Laird Connectivity's products are subject to standard Terms & Conditions.

www.lairdconnect.com

© Copyright 2023 Laird Connectivity. All Rights Reserved. Patent pending. Any information furnished by Laird Connectivity and its agents is believed to be accurate and reliable. All specifications are subject to change without notice. Responsibility for the use and application of Laird Connectivity materials or products rests with the end user since Laird Connectivity and its agents cannot be aware of all potential uses. Laird Connectivity makes no warranties as to non-infringement nor as to the fitness, merchantability, or sustainability of any Laird Connectivity materials or products for any specific or general uses. Laird Connectivity or any of its affiliates or agents shall not be liable for incidental or consequential damages of any kind. All Laird Connectivity products are sold pursuant to the Laird Connectivity Terms and Conditions of Sale in effect from time to time, a copy of which will be furnished upon request. Nothing herein provides a license under any Laird Connectivity or any third-party intellectual property right.

