RAILWAY CERTIFIED

POWER FOR A BETTER PUTURE

Singel 3 | B-2550 Kontich | Belgium | Tel. +32 (0)3 458 30 33 | info@alcom.be | www.alcom.be Rivium 1e straat 52 | 2909 LE Capelle aan den Ijssel | The Netherlands | Tel. +31 (0)10 288 25 00 | info@alcom.nl | www.alcom.nl

MINMAX

4	
0	
64.2	
0	
5	
õ	
9	
NO	
0	
5	
5	
0	
in.	
22	
ш	
\geq	
õ	
ñ.	
\Box	
\Box	
TFED	
RTIFIED	
ERTIFIED	
CERTIFIED	
ERTIFIED	
VAY CERTIFIED	
LWAY CERTIFIED	
ILWAY CERTIFIED	
AILWAY CERTIFIED I	
ILWAY CERTIFIED	
AILWAY CERTIFIED I	
AILWAY CERTIFIED I	

RAILWAY CERTIFIED POWER SOLUTIONS ENGINEERED BY MINMAX

The MINMAX Railway Certified DC–DC Converter family with powers ranging from 3 to 150 W are designed to meet stringent requirements and harsh environmental testing and are specifically designed to be the primary insulation barriers for railway DC power architectures. These railway certified DC–DC converters are available for DC battery bus voltages of 24, 36, 48, 72, 96, and 110 VDC, and for tight regulation for output voltages of 5, 12, 15, 24, 54, ±12, and ±15 VDC. In accordance with EN 50155:2017 certification requirements, these railway certified DC–DC converters conform to the railway DC input-voltage range and transient/variation requirements; the voltage isolation/withstand test vibration and shock/bump test requirements in EN 61373; the cooling, dry, and damp heat test requirements in EC/EN 60068-2-1, 2, and 30; and the EMC railway standards in EN 50121-3-2.

An advanced circuit topology provides a very high efficiency up to 93%, which allows a base plate temperature up to 105°C and very high I/O isolation up to 3000 VAC with reinforced insulation. Further features include overload, overvoltage, and short-circuit protection; remote ON/OFF; output trim; and output sense. For fire protection testing, these converters meet the EN 45545-2 standard to ensure system safety.

CONTENTS

THE INTRODUCTION OF RAILWAY CERTIFICATION EN 50155:2017	
Fundamental Introduction	03
Input Voltage Specification Test for EN 50155 Railway Certification	04
Voltage Isolation/Withstand Test for EN 50155 Railway Certification	05
Electromagnetic Capability (EMC) Test for EN 50155:2017 Railway Certification	90
Environmental Requirement Test for EN 50155 2017 Railway Certification	07-08
Mechanical Requirements Test for EN 50155 2017 Raitway Certification	60
Fire Protection Test of the EN 45545-2 Standard	10-11
HIGHLIGHTED PERFORMANCE OF RAILWAY CERTIFIED PRODUCTS	12
MINMAX RAILWAY CERTIFIED POWER SOLUTIONS	0
Successful Application	26
Railway Certified Products Overview	28
Railway Certified 3W DIP Package DC-DC Converters	29
Railway Certified 10-40W 2"×1" Package DC-DC Converters	29-30
Bailway Cartifiad E0-150W Quartar Brick DC-DC Convertere	31-32

THE INTRODUCTION OF RAILWAY CERTIFICATION EN 50155:2017

FUNDAMENTAL INTRODUCTION

• Trains and high-speed rail have become more technically advanced and passenger-friendly with many additional infotainment systems and critical safety equipment. These types of electrical systems and functions, such asmonitoring sensors around the train; air conditioning; lighting; and door-opening, communication, and entertainment systems, will inherently include CPUs, DSPs, analog circuitry, and highly sensitive sensors, which all must be powered from the railway storage battery system within the train.

• Modern trains and high-speed rail achieve reductions in weight and space by using a vehicle battery voltage upto 72 V or 110 VDC, but most electronic equipment/systems require input voltages of 5, 12, 15, 24, and 54 VDC. Basically, there are many railway certified DC–DC converters between the electronic equipment/systems and train's storage battery to transform the basic 72 V or 110 VDC into 5, 12, 15, 24, and 54 VDC. Moreover, the train's storage battery is typically located within the drive train locomotive at the front or rear of the vehicle. Therefore, the DC voltage is supplied over long distances by a power cable to the electronic equipment/system. These long power-cable lengths can pick up electromagnetic disturbances, induced transient voltage spikes [caused by nearby lightning strikes], and power-line fluctuations. The train's storage battery is also used to drive starter motors, pumps, compressors, drivers, relay coils, and other switch gears. These and other high-power loads are connected to the alternator, generator, and transformers. The end result of this environment is an unstable, highly fluctuating, noisy power source. It can also cause the risk of dangerous energy shocks due to excess energy hazards such as electric shocks, transient voltage spikes, mechanical damage, shorts developing between PCB tracks, air gaps, arcing, and ground loops, which cause ignition and fire situations. Each of these situations will extremely impact/interfere with the train's electronic equipment/ system, resulting in a failure. Thus, we conclude that high-performance, high-isolation (with reinforced insulation), high-robustness, reliable, rugged, durable, uninterruptible railway certified DC-DC converters between the electronic equipment/system and the train's storage battery are necessary for long-term stable operation of the train's equipment and systems.

• Therefore, MINMAX railway certified DC-DC converters between the train's storage battery and electronic equipment/system, which are integrated into train/rolling stock applications must comply with the international railway certification "EN 50155:2017(IEC 60571): Railway Application Electronic Equipment Used on Rolling Stock."This certification covers specification requirements including the input voltage specification test, I/O voltage isolation test, insulation test, Electromagnetic Capability (EMC) test, mechanical requirement test, and harsh environmental test including the operating temperature test and the humidity, cooling, dry heat and damp heat test that trains/rolling stock electronic equipment must meet.

 The right product is essential, but it is not everything. In addition to our product offerings, we provide acomprehensive range of services, including analysis and qualification in the development stage, demand planning and special logistics in the production phase, and end-user support in the aftermarket.
 MINMAX aim to serve you with sincerity to ensure that your customers return time and again.

VOLTAGE ISOLATION/WITHSTAND TEST FOR EN 50155:2017 RAILWAY CERTIFICATION	 Railway certified DC-DC converters have significantly played a crucial role in the certification of on-train electrical equipment. A 2000-VAC isolation/withstand voltage test with reinforced insulation of the MINMAX railway certified DC-DC converters will verify the design creepage, air clearances, and insulation level of the power module demands. The above criteria comply with the limited leakage current under normal/single-fault conditions and protect sensitive circuit loads from noise, electromagnetic disturbances, power bus fluctuations, surges, electrical shocks, transient voltage spikes, insulation breakdown of the power architecture, mechanical damage, shorts developing between PCB tracks, air gaps, arcing, and ground loops, which cause ignition and fire situations. 	Phenomenon EN 50155 : 2017 Reference Clause Phenomenon Standard Test Level MI Isolation / Withstand EN 50155 13.4.9 Voltage Test Test Voltage / Time: 1500VAC / 60sec. Test Voltage /		EI ECTROMAGNETIC CAPARII ITY (EMC) TEST FOR	EN ENTERSONT DAIL WAY CEDTIFICATION	 Electromagnetic compatibility (EMC) is another main category of the EN 50155 certification. Electromagnetic compatibility (EMC) is another main category of the EN 50155 certification. MINMAX raitway certified DC-DC converters are approved at the European EN 50121-3-2 standard "Raitways Applications Electromagnetic Compatibility Part 3-2 Rolling Stock Apparatus," which states that the power module should not emit conducted and radiated electromagnetic interference (EMI) in excess of the defined levels and should be protected from outside negative effects due to conduction, radiation, surges, 	ESD, and EFT interference.				
ST FOR TION	ally provided by the train's storage battery were architecture.	ing normat operation. or 100 ms and overvoltage surges of 1.4VN y certified DC-DC converters that cover all i for the permanent operation of a train's		lause / Standard MINMAX Test Level	150155 5.1.1.1	Test Voltage / Time: 0.7 VN // 60min. Test Voltage / Time: VN / 60min. Test Voltage / Time: 1.25 VN / 60min. Test Voltage / Time: 0.6 VN / 10min. Test Voltage / Time: 1.4 VN / 10min. Test Voltage / Time: 1.4 VN / 60min. Test Number: repeated 10 times	4 50155 5.1.1.2 Class 51: 100%/N / 0mS Class 52: 100%/N / 10mS* Test Number: repeated 10 times	50155 5.1.1.3	Class C1: Dip 40%VN / 100mS & 10min. Class C2: Interruptions 100%VN / 30mS* Test Number: repeated 10 times	3.4.3	Voltage Level / Duration: 1.4 VN / 10min. Voltage Level / Duration: 1.4 VN / 60min. Test Number: repeated 10 times
INPUT VOLTAGE SPECIFICATION TEST FOR EN 50155:2017 RAILWAY CERTIFICATION	 In the case of railway certified DC-DC converters, the input port must interface with the train's storage battery power source. The standard specifies that the input-voltage range of the converters must be opeated in the same range as the train's storage battery voltage during normal operation. A surge voltage test is specified to cover extreme variations, in addition to the minimum insulation requirements for safety. Nominal DC input voltages (NN) of 24, 36, 48, 72, 96, and 110 VDC are usually provided by the train's storage battery power sources used as the primary insulation barrier in the railway DC power architecture. 	function properly with input voltages that range from U.YVN to 1.25VN during normal operation. Further, these converters also withstand input voltage drops of 0.6VN for 100 ms and overvoltage surges of 1.4VN for 1s that may occur during startup. The table below summarizes, with some exceptions, the MINMAX railway certified DC–DC converters that cover all the specified input ranges, brown-outs, transients, and voltage spikes for the permanent operation of a train's	m.	EN 50155 Reference Clause / Standard Standard Test Level MINN	EN 50155 13.4.1/ EN 50155 5.1.1.1	Test Voltage / Time: 0.7 VN / 10min. Test Voltage / Time: VN / 10min. Test Voltage / Time: 1.25 VN / 10min. Test Voltage / Time: 0.6 VN / 0.15ec. Test Voltage / Time: 1.4 VN / 0.15ec. Test Voltage / Time: 1.4 VN / 15ec. Test Number: repeated 10 times	EN 50155 13.4.3 / EN 50155 13.4.3 / EN 50155 5.1.1.2 Class 51: 100%VN / 0mS Class 52: 100%VN / 10mS Class 52: 100%VN / 10mS Test Number: repeated 10 times	N 50155 13.4.3 / EN 50155 5.1.1.3	Class C1: Dip 40%VN / 100mS Class C2: Interruptions 100%VN / 30mS Test Number: repeated 10 times	EN 50155 13.4.3	Supply Over Voltages Voltage Level / Duration: 1.4 VN / 0.1sec. Voltage Level / Duration: 1.4 VN / 1sec. Test Number: repeated 10 times
INPUT VOLTA EN 50155:201	 In the case of railway certified DC-DC convert interface with the train's storage battery pow specifies that the input-voltage range of the con in the same range as the train's storage batter operation. A surge voltage test is specified to cover extrem the minimum insulation requirements for safety. Nominal DC input voltages (VN) of 24, 36, 48, 72, power sources used as the primary insulation ba MINMAX railway certified DC-DC converters pow 	tunction properly with input voltages Further, these converters also with for 1s that may occur during startup. The table below summarizes, with s the specified input ranges, brown-	electronic equipment system.	Phenomenon		Supply Variations	Supply Interruptions		Supply Change Over		Supply Over Voltages

04 RAILWAY CERTIFIED POWER SOLUTION GUIDE 1 2024

ELECTROMAGNETIC CAPABILITY (EMC) TEST FOR EN 50155-2017 RAILWAY CERTIFICATION

Phenomenon	EN 50155 Reference Clause / Standard	e Clause / Standard
	Standard Test Level MINMAX FN 5015-3-1 & A / FN 5013-3-2 FN 55014-2-1	MINMAX Test Level 1121-3-2 EN 55016-2-1
Conducted Emission	Frequency / level: 5-30MHz / 93 dBuV Frequency / level: 0.5-5MHz / 93 dBuV Frequency / level: 0.15-0.5MHz / 99 dBuV	Frequency / level: 5-30MHz / 60 dBuV* Frequency / level: 0.5-5MHz / 60 dBuV* Frequency / level: 0.15-0.5MHz / 66 dBuV*
	EN 50155 13.4.8/ EN 50121-3-2, EN 55016-2-1	121-3-2, EN 55016-2-1
Radiated Emission	Frequency / level: 30–230MHz / 40 dB(uV/m) Frequency / level: 230–1000MHz / 47 dB(uV/m) Frequency / level: 30–230MHz / 40 dB(uV/m)*	Frequency / level: 30-230MHz / 40 dB(uV/m)* Frequency / level: 230-1000MHz / 47 dB(uV/m)*
	EN 50155 13.4.8 / EN 50121-3-2, EN 61000-4-2	121-3-2, EN 61000-4-2
ESD Immunity Test	Air Discharge: ±8KVDC Contact Discharge: ±6KVDC Indirect Discharge HCP & VCP: ±6KVDC	Air Discharge: ±8KVDC Contact Discharge: ±6KVDC Indirect Discharge HCP & VCP: ±2/4/6KVDC
	EN 50155 13.4.8 / EN 50121-3-2, EN 61000-4-3	1121-3-2, EN 61000-4-3
Radio-Frequency, Electromagnetic Field Immunity Test	Frequency / Field: 5100-6000MHz/3 V/m Frequency / Field: 2000-2700MHz/5 V/m Frequency / Field: 1400-2000MHz/10 V/m Frequency / Field: 80-1000MHz/20 V/m	Frequency / Field: 5100–6000MHz/5 V/m Frequency / Field: 2700–5000MHz/10 V/m Frequency / Field: 2000–2700MHz/10 V/m Frequency / Field: 1400–2000MHz/20 V/m Frequency / Field: 80–1000MHz/20 V/m
Flortrical Fact	EN 50155 13.4.8 / EN 50121-3-2, EN 61000-4-4	1121-3-2, EN 61000-4-4
Transient/Burst Immunity Test	Line, Neutral, Line+Neutral: ±2KVDC	Line, Neutral, Line+Neutral: ±2KVDC*
	EN 50155 13.4.8 / EN 50121-3-2, EN 61000-4-5	121-3-2, EN 61000-4-5
Surge Immunity Test	Line to Line: ±1KVDC	Line to Line: ±2KVDC*
Radio-Frequency,	EN 50155 13.4.8 / EN 50121-3-2, EN 61000-4-6	1121-3-2, EN 61000-4-6
Conducted Disturbances Immunity Test	Frequency : 0.15 to 80MHz Field: 10 Vrms	Frequency : 0.15 to 80MHz Field: 10 Vrms
Power Frequency	EN 61000-4-8	00-4-8
Magnetic Field Immunity Test	No Needed	Frequency:50Hz Field: 30/100/1000 A/m
Damo Oscillatory	EN 61000-4-10	0-4-10
Magnetic Field Immunity Test	No Needed	Frequency: 0.1 & 1 MHz Field: 30 A/m

RAILWAY CERTIFIED POWER SOLUTION GUIDE

ENVIRONMENTAL REQUIREMENT TEST FOR EN 50155:2017 RAILWAY CERTIFICATION

Operating Temperature Range Requirement

The operating temperatures are divided into four classes according to the severity of the environment, as summarized in the table below. When designing railway certified DC-DC converters, it is necessary to consider the over-temperature during startup, as indicated in the third column.

Rating
ature
emper
-
Operating
1
e]
Tabl

Class	Equipment Operating Temperature Rangel ^o C)
0T1	-25°C to +55°C
072	-40°C to +55°C
0T3	-25°C to +70°C
0T4	-40°C to +70°C
OT5	-25°C to +85°C
0T6	-40°C to +85°C

The OT5 and OT6 types cannot serve as the general specifications of temperature requirements for vehcles (but can be used in the semiconductor drive unit (SDU), engine control unit). The OT1 and OT2 types are suitable for passenger compartments and driver's cab. The long-term temperature must be maintained at 25°C, while the temperature at the passenger compartments and driver's cab can affect the service life of the material. The OT3 and OT4 types are ideal for the equipment in the cabnets with a long-term reference temperature of 45°C. This ambient temperature can also affect the service life of the material.

The indoor temperature rise should be considered during design phase to ensure that the temperature of the *components will not exceed the specified rated temperature. For example, if the air temperature around the PCB rises by about 15°C (this temperature rise depends mainly on the power consumption of the PCB itself and the adjacent PCB, or the natural airflow, enforced airflow, etc.). While designing the PBA, we should consider placing one PBA horizontally or vertically; or allow the sub-racks of the PBA to be stacked together. The suppliers should consider the requirements imposed by specific onboard installations.

In some exceptional cases (such as partitions, effects of sunlight, the shutdown of the auxiliary cooling system), the additional operational checks on the switch-on equipment should be processed under a short-term thermal condition based on the status of ST1 or ST2 as shown in Table 2 (Page 08).

SIGNATION CARTA CARACTER CARACTE	MECHANICAL REQUIREMENTS TEST FOR EN 50155:2017 RAILWAY CERTIFICATION	Vibration and Increased Vibration Test The EN 50155 certification specifies that railway certified DC-DC converters mounted on boards and boxes fixed to the railway/railroad vehicle frame must be able to withstand and satisfy the stringent EN 61373 vibration and shock test. Therefore, the manufacturing processes must be rigorously controlled to ensure consistent performance. The entire process requires dedication and commitment to serve the special needs of rolling-stock on board electronics. MINMAX railway certified DC-DC converters have been specially designed for high shock and vibration tolerances are able to withstand, without deterioration or malfunction, such conditions in compliance with EN 61373 standards.	EN 50155 : 2017 Relerence Clause / Standard Standard Test Level MINMAX Test Level	EN 50155 13.4.11 EN 50155 13.4.11 EN 60068-2-61 Functional Category 1, Class B, Body Mounted Category 1, Class B, Body Mounted Random Frequency Range: 5H2-150Hz Category 1, Class B, Body Mounted Kibration Test Grms Value: 0.102 Grms (1.0 m/s²) for Each Axis Grms Value: 0.2 Grms (2.0m/s²) for Each Axis Dwell Time: 10min/axis in Storage Dwell Time: 10min/axis in Operation	EN 50155 13.4.11/ EN 61373 [EN 60068-2-6] Increased Category 1, Class B, Body Mounted Random Frequency Range: 5H2-150Hz Random Frequency Range: 5H2-150Hz Officer and the structure of the structur	Shock Test Category 1, Class A&B, Body Mounted Wave Form: Half-Sine Category 3, Akle Mounted Wave Form: Half-Sine Shock Test Wave Form: Half-Sine Mounted Mave Form: Half-Sine Acceleration Peak: 5.102 Gms (50m/s²) for Each Axis Nowell Time: 30mS in Storage Dovell Time: 100 ms (100m/s²) for Each Axis Dovell Time: 30mS in Storage Dovell Time: 100 ms (100m/s²) for Each Axis Dovell Time: 30mS in Storage Dovell Time: 100 ms (100m/s²) for Each Axis Dovell Time: 30mS in Storage Dovell Time: 100 ms (100m/s²) for Each Axis Dovell Time: 30mS in Storage Dovell Time: 100 ms (100m/s²) for Each Axis Dovell Time: 30mS in Storage Dovell Time: 100 ms (100m/s²) for Each Axis	No Reference / No Reference (EN 60068-2-29) Nave Form: Half-Sine Wave Form: Half-Sine Acceleration Peak: 5.102 Grms (50m/s²) for Each Axis Dwelt Time: 30mS in Operation Acceleration Peak: 10 Grms (100m/s²) for Each Axis Dwelt Time: 11mS in Operation Bump Test No Needed Bump Times: 2000Bumps for Each Direction

RAILWAY CERTIFIED POWER SOLUTION GUIDE 1 2024

08

FIRE PROTECTION TEST OF THE EN 45545-2 STANDARD	The railway/railroad transportation industry generally requires power module materials to meet the relevant requirements of the EN 45545-2 fire protection test standard. The EN 45545-2 guidelines specify that different materials under test shall be classified, and their "fire safety index parameter and test tions" are defined according before a safe area can always be reached immediately.	Operation Category 2	Vehicles for operation on underground sections, tunnels and/or elevated structures, with side evacuation available	and where there are stations or rescue stations that offer a place of safety to passengers, reachable within a short running time.	Operation Category 3		• The fire protection grades (HL Levels) of different materials under testing will be evaluated based on the final test long running time.	• The fire protection grades of materials required for railway/railroad vehicles will be classified according to the Vehicles for operation on underground sections, tunnels and/or elevated structure, without side evacuation available	vehicle's operating environment, different vehicle categories, as well as referencing the table below (Table 1 - and where there are stations or rescue stations that offer a place of safety to passengers, reachable within a short running time.	• The fire protection grades (HL Level) of all plastic housings, printed circuit boards (PCBs), and potting compounds of	Design category all MINMAX's railway certified power modules will be evaluated based on the final test results of the "fire safety index	D: S: parameter to ensure salety during raitway/raitroad venice oper tion. no emergency trained vehicles couchette vehicles	HL1 HL2 HL2	HL2 HL2 HL2	НL2 НL2 НL2	НГЗ НГЗ НГЗ	
TEST OF THE EN 45545-2	industry generally requires power module mater e protection test standard. The EN 45545-2 guidel ad, and their "fire safety index parameter and test ti		a service of the serv	samptes eneous materials	ructure	The following index parameters are used to evaluate fire protection capabilities: Heat release rate, Combustibility, Smoke toxicity, Smoke opacity	s) of different materials under testing will be evalua er".	als required for railway/railroad vehicles will be c	fferent vehicle categories, as well as referencing	E	Design category	A: Vehicles forming part of an automatic Double deck train having no emergency trained vehicles staff on board					
TECTION	The railway/railroad transportation requirements of the EN 45545-2 fire materials under test shall be classifie to different estencries of P1–P34		a shared by an iter	 Functional descriptions of nicesale samples Fire safety requirements of homogeneous materials 	3. Component materials of internal structure	ex parameters are Combustibility, Sm	The fire protection grades (HL Levels) or data of the "fire safety index parameter".	r grades of materi	vehicle's operating environment, dif Hazard Level Classification),	Table 1 – Hazard Level Classification		N : Standard vehícles	нгі	HL2	HL2	HL3	
	test to	5	1	quir	nate	inde ate, C	tion e safe	ction	ating Class.	ard L		Operation category					

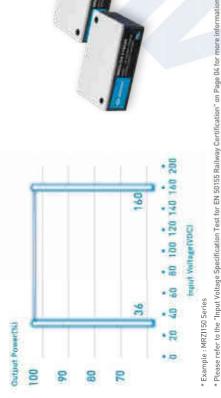
1

PRODUCT LINE PORTFOLIO I 2024

RAILWAY CERTIFIED POWER SOLUTION GUIDE

States and

10 RAILWAY CERTIFIED POWER SOLUTION GUIDE | 2024

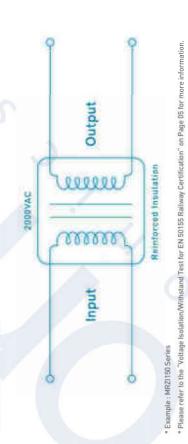

HIGHLIGHTED PERFORMANCE OF RAILWAY CERTIFIED PRODUCTS

Ultra-wide Input Voltage Range

Provide ultra-wide input voltage range between 36-160VDC to meet different railway DC bus usage requirements.

The 36VDC input is tailored for systems requiring low-voltage start-up.

Support full output power cover whole input voltage range.


High Precision Output Voltages

Designed with high-precision output voltages to prevent significant operation changes by input voltage, output load current and ambient temperature uncertainty from causing a negative impact on railway systems

Reinforce Insulation & 2KVAC Isolation for System Safety

The 2KVAC I/O isolation with reinforced insulation and vacuum encapsulated creates a solid electrical barrier electric shock, transient voltage spike, insulation breakdown of power architecture, mechanical damage and short developing between PCB tracks, air gaps, arcing and ground loop. Thus provide safety on long-term operation of which to protect sensitive circuit load from noise, electromagnetic disturbances, power bus fluctuation, surge, railway/railroad equipment.

Optimized Thermal Structure Design

Through optimized thermal structure design (such as the high thermal conductive adhesives, Low Thermal Impedance Components and optimized PCB layout) to ensure better thermal performance and long-term reliability.

Optimized PCB Layout

Provide three heatsink options with different heights to meet the usage occasion with different operating

Heatsink Options for Better Temperature Performance

Wider Operating Temperature Range

Wider Operating Ambient Temp. Range -40°C to +85°C

Wider Operating Baseplate Temp. Range -40°C to +105°C

Storage Temp. Range -50°C to +125°C

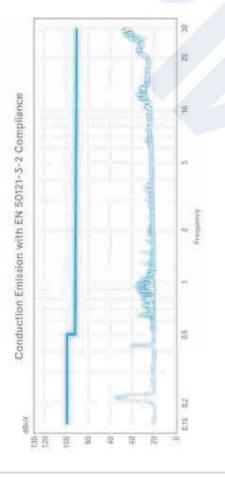
Operating Humidity 95% rel. H

Dutput Preser 194

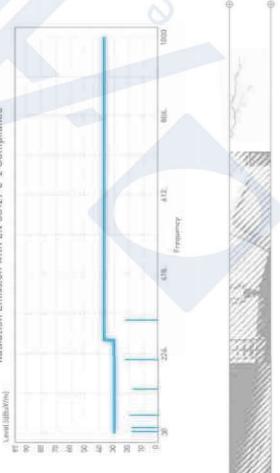
. Bdyeptate Temperature 5 100°C	44
043e@late	the tott
	ດີ 29 ແຕ່ Acribitent Terraportature (*GI
	0 Acristian
	02*
W001724001 W0052808 W0022800	Alton (Chin

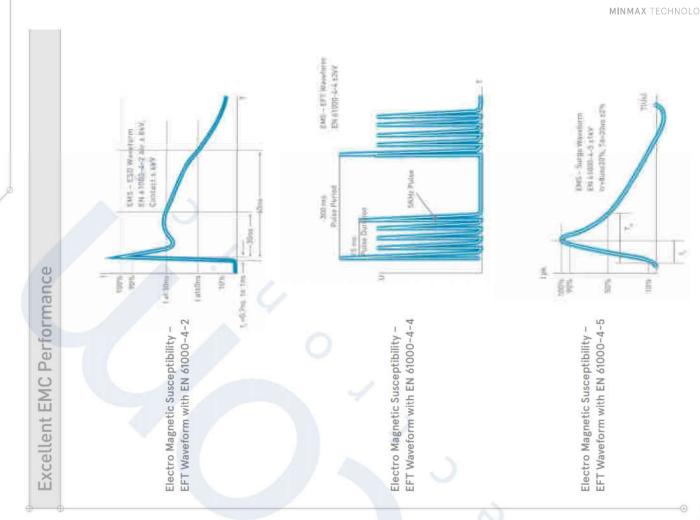
1/20

* Please refer to the "Environmental Requirement Test for EN 50155 Rallway Certification" on Page 07-08 for more information


temperature demand.

ИІИМАХ ТЕСНИОГОĞY




Excellent EMC Performance

performance on conduction and radiation emission & EMS performance on ESD, Surge, EFT, RS, CS and PFMP Excellent EMC performance by upgraded noise filtering technology helps to improve overall system EMI immunity.

()

Passed Environment Stress Test & Mechanical Stress Test to meet harsh environmental requirements:

Low Temperature Start-up Test
 EN 50155 13.4.4 / EN 60068-2-1

EN 50155 13.4.11 / EN 61373 [EN 60068-2-6]

• Functional Random Vibration Test

EN 50155 13.4.11 / EN 61373 [EN 60068-2-6]

Increased Random Vibration Test

Dry Heat Test
 EN 50155 13.4.5 / EN 60068-2-2

 Low Temperature Storage Test EN 50155 13.4.6 / EN 60068-2-1

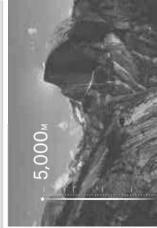
EN 50155 13.4.11 / EN 61373 [EN 60068-2-27]

Shock Test

Cyclic Damp Heat Test
 EN 50155 13.4.7 / EN 60068-2-30

Please refer to the "Environmental & Mechanical Requirement Test for EN 50155 Railway Cartification" on Page 07-09 for more inform

Rigorous Temperature Cycling Test


MINMAX's raitway certified products have passed 500+ times the temperature cycling test at -40°C to +125°C as Innovation reliability test to most the stringent conjugaments of estimate order.

Altitude by 5000 Meters for Plain to Plateau Operation

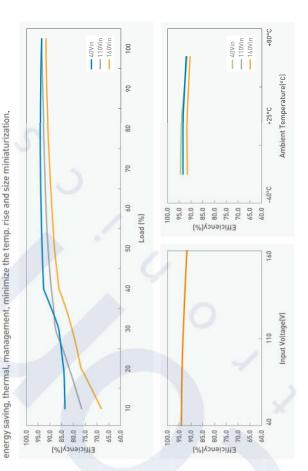
 Certified by UL standards of safety to withstand an altitude of 5000m.

 Avoids short circuit development between PCB tracks, air gaps and arcing, to solve the highaltitude operation-limit issues of your system.

MINMAX TECHNOLOGY

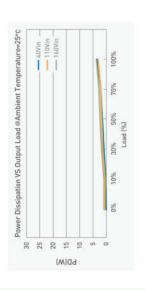
* DUT : MRZI150 Series

Reliability Screening Policy


Besides EN 50155 standard, our raitway DC-DC converters are tested by conscientious and retiable to provide high quality and safe products.

Testing Characteristics	Testing Condition	CONTRACT
Developin	Developing Product Reliability Test	
Burn-in	Input Line Output Load Temperature Duration	Nom. Line Full Load Room Temperature 1032 HRs
Highly Accelerated Life Test [HALT]	Thermal Step Stress Test Rapid Thermal Stress Test Vibration Step Stress Test Combined Environmental Stress Test	tress Test
Temperature Cycling Test (TCT)	Temperature Change Steady State Duration Ramp Rate Number of Cycles	-40°C ~ +125°C 30min 20°C/min 500+
Temperature & Humidity Storage Cycling Test (Non-Operation)	Temperature Change Ramp Rate Relative Humidity Steady State Duration Number of Cycles	Low to High Temperature 1-3°C/min +95% RH. 1 HR 5 Cycles
Power and Temperature Cycling Test (PTCT) (In Operation)	Input Line Change Output Load Change Temperature Change Relative Humidity Duration for ON/OFF Number of Cycles	Low/Nom./High Line No or Min./Futl Load Low to High Temperature +95% RH. 3 Sec 300 Cyctes
Temperature, Humidity and Blas Test [THB] [In Operation]	Input Line Output Load Temperature Relative Humidity Operating Duration	High Line No or Min. Load +85° RH. 1000 HRs
Low Temperature Test (In Operation)	Input Line Output Load Temperature Duration	Nom. Line Full Load Low Temperature Achieve Thermal Equilibrium
High Temperature Test (In Operation)	Input Line Output Load Temperature Duration	Nom. Line Full Load High Temperature Achiéve Thermal Equilibrium
	Waveform	Random
Vibration Test Non-Oberation]	P.S.D Level	10 Hz · 1.04×10 ⁻³ g ² /Hz 30 to 200Hz · 20.8×10 ⁻³ g ² /Hz 500 Hz · 2.08×10 ⁻³ g ² /Hz
	Duration	30 minutes
	Directions	X, Y and Z
Shock Test (Operation)	Waveform Acceleration Duration Number of Shocks	Half-sine 30 g 11 ms 3 shocks for each ±axis
ESD Test	Contact Discharge Air Discharge	±4KV ±2/4/8KV
Soldering Heat Test	MIL-STD-202F Method 210E	
RoHS	RoHS Directive 2011/65/EU	
Droot Toot	Drop Height	66 cm
Urop lest	THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE	

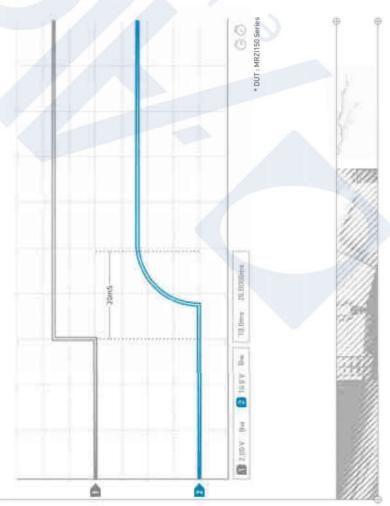
ECO-Techology


Green Design for Higher Full Range Efficiency

High efficiency for whole output load, input line & ambient temp. range by latest green design technology helps to energy saving, thermal, management, minimize the temp. rise and size miniaturization.

Green Design for Energy Saving & Minimize Power Dissipation

 Ultra low 0% to 100% load power consumption by latest green design technology helps to improve and minimize the temp. rise (avoid thermal problem), energy saving and prolong the battery life.

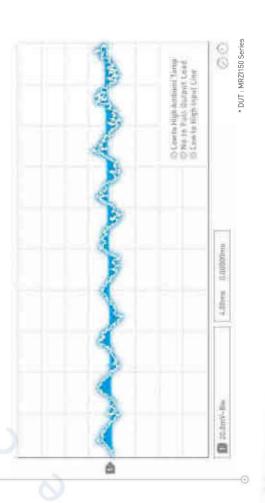

Green Design for No Min. Load / **Dummy Load Requirement**

the MINMAX railway certified DC-DC converters will not instable output voltage oscillation in no-load or light-load With high stability feedback loop design, condition.

Faster Start-up Time without Overshoot

Fast stat-up time without overshoot which help to avoid system load timing failure and ensure safety operation during start-up operation.

Superior Load Driving without Failure


RAILWAY CERTIFIED POWER SOLUTION GUIDE

The MRZI150 can support superior system load driving capability at very low or even zero voltage output without

Lower Ripple & Noise

Through upgraded noise filtering technique, the ripple & noise of MR21150 series keep low for whole output load, input line and ambient temp. which help to reduce the peripheral components needed and noise interference.

МІИМАХ ТЕСНИОГОСИ

Remote ON/OFF Control & Output Voltage Trim Multi-Protection Functions

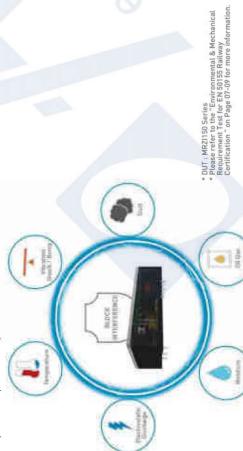
The MRZ1150 series is also equipped with the positive/negative remote control, output voltage trim and sensing functions to provide design flexibility for customers.

POSITIVE AND NEGATIVE LOGIC

REMOTE ON/OFF

O OCP

IOI OUTPUT VOLTAGE TRIM


AM OUTPUT VOLTAGE SENSING

NEAT-SPE PROTOTICAL (A) 0TP

Fully Encapsulated for Blocking Interference

For the electromagnetic susceptibility and environmental physical stress interference which are protected from a comprehensive protection capabilities.

Fire Protection Test to Save Your System

The following index parameters are used to evaluate fire protection capabilities:

Fire protection grades (HL Level) of all plastic housings, printed circuit boards (PCB), and potting compounds of all MINMAX's railway certified power modules will be evaluated based on the final test results of the "fire safety index parameter" to ensure safety during railway/railroad vehicle operation.

- C Railway Certified EN 50155 (IEC 60571) Approved
- Fire Protection Test EN 45545-2 Approved
- G Vibration and Shock Test EN 61373 Approved
- G Cooling, Dry & Damp Heat Test IEC/EC 60068-2-1, 2, 30 Approved
- C Raitway EMC Standard EN 50121-3-2 Approved
- G UL/cUL/IEC/EN 62368-1[60950-1] Approved C CE Marking

	MINMAX TECHNOLOGY
Array Contention of space of the sector of the s	When Lubristation System
FRONT AND TOP of FRONT AND TOP of France in System States Constrained System States Constrained System States Constrained States Constrained France Constrained Constrained System Syste	
Another Systems Auofhan Systems Auofhan Systems Strand Managarunat Systems Strand Managarunat Systems Tran Cartral and Managarunat Systems Trans States Managarunat Systems	
	Image: Section System Section System Image: Section System

0
0
04
-
2.4 2
144
0
10
N
2
õ
0
~
F
_
-
_
10
22
20
_
\geq
-
0
PO
۵.
D
۵.
ED P
ЕDР
IFIED P
TIFIED P
TIFIED P
RTIFIED P
ERTIFIED P
ERTIFIED P
CERTIFIED P
Y CERTIFIED P
Y CERTIFIED P
AY CERTIFIED P
VAY CERTIFIED P
WAY CERTIFIED P
LWAY CERTIFIED P
ILWAY CERTIFIED P
AILWAY CERTIFIED P
AILWAY CERTIFIED P
AILWAY CERTIFIED P
AILWAY CERTIFIED P
AILWAY CERTIFIED P
RAILWAY CERTIFIED P
AILWAY CERTIFIED P

24

RAILWAY CERTIFIED PRODUCTS OVERVIEW

1-89279

.

UL/CUL/IEC/EN					11.25				10000		
(IEC90231) EN20122		+				•		•	142	1.	4
əsnə2 tuqtu0								•	1.		•
output Voltage Trim				•		•			/•)		•
Remote ON/OFF Control				•				1			•
010								+			
0Ab						•		•			•
d02/d00		•		•	•						•
beoJ .niM oV		•		•	•	•		•	•		•
fneidmA pnisera0 ™engans, qme⊺		-40-+92°C Ambient		-40~+95°C Ambient	-40-+88.5°C Ambient	-40-+77.5°C Ambient		-40-+85°C Ambient	-40~+105°C Base plate	-40~+105°C Base plate	-40~+105°C Base plate
Efficiency		85%		89%	88%	%06		92%	91%	91.5%	%06
(VDC) (VDC)		3000VAC Reinforced		3000VAC Reinforced	3000VAC Reinforced	3000VAC Reinforced		3000VAC Reinforced	2000VAC Reinforced	2000VAC Reinforced	2000VAC Reinforced
Output Voltage (VDC)		5, 12, 15, ±12, ±15		5, 12, 15, 24, ±12, ±15	5, 12, 15, 24, ±12, ±15	5, 12, 15, 24, 54, ±12, ±15		5, 12, 15, 24,	5, 12, 15, 24, 54	5, 12, 15, 24, 54	5, 12, 15, 24, 54
(VDC) Range Input Voltage		9-36 18-75 40-160	ckage	9-36 18-75 40-160	9-36 18-75 40-160	36-160	Brick	43-101 66-160	36-160 ¹¹¹	36-160 ¹³⁴	36-160 ^m
0utput Power	ckage	3W	<1" Pa	10W	20W	40W	uarter	50W	75W	100W	150W
Series	3W • DIP Package	MIZ103	10-40W • 2"×1" Package	MKZI10	MKZI20	MKZI40	50-150W • Quarter Brick	MTQZ50	MRZI75	MRZI100	MRZI150

.

.

.

.

111	
-	
0	
-	
O.	
-	
0	
0	
lane -	
in the second	
-	
-	
0	
0	
00	
~ /	
100	
000	
1.0.0	
h.h.d	
>	
-	
0	
0.	
Ω.,	
0	
0	
0	
ED P	
IED P	
ED P	
IFIED P	
IED P	
TIFIED P	
RTIFIED P	
RTIFIED P	
ERTIFIED P	
CERTIFIED P	
ERTIFIED P	
CERTIFIED P	
Y CERTIFIED P	
CERTIFIED P	
Y CERTIFIED P	
VAY CERTIFIED P	
VAY CERTIFIED P	
VAY CERTIFIED P	
WAY CERTIFIED P	
ILWAY CERTIFIED P	
AILWAY CERTIFIED P	
AILWAY CERTIFIED P	
AILWAY CERTIFIED P	
AILWAY CERTIFIED P	

3W MIZI03 Series DIP Package					
	ackage	(All and a second	La contra	CB CE	
		Model St	Model Selection Guide	a	
	Model Number	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)max	Efficiency
	MIZ103-24505	J	5 5	600 250	80%
	MIZI03-24515	24	12	200	04.% 85%
	MIZ103-24D12	100 - 1	±12	±125	83%
-	MIZI03-24D15 MIZI03-48505		0 #	±100	84% 80%
F	MIZI03-48512	1	12	250	83%
	MIZI03-48515	48 (18 - 75)	15	200	84%
	MIZI03-48D12		±12	±125 ±100	83%
	MIZI03-110505		E LO	009	80%
	MIZI03-110S12		12	250	84%
	MIZI03-110S15	100	15	200	84%
	MIZI03-110D12	[00] - 04]	±12	±125	83%
	MIZI03-110D15		±15	±100	85%
2		ENGONS			
		Model St	Model Selection Guide	е	
2	Model Number	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)max	
	MKZI10-24505		in c	2000 02E	%78 %70
	MKZ110-24515	24	15	670 670	87%
	MKZI10-24S24	[9 - 36]	24	417	88%
	MKZI10-24D12		±12	±417	86%
7	MKZ110-24013 MKZ110-48505		10	2335	85%
	MKZI10-48512		12	835	87%
	MKZI10-48S15	48	15	670	87%
	MKZI10-48524	(18 - 75)	24	417	86%
	MKZI10-48D12 MKZI10-48D15		+15	±417 +335	89% 88%
	MKZI10-110S05		5	2000	82%
	MKZI10-110512		12	835	85%
	CI SUI I -UI IZVIM	100	20	0/0	0/20
	MKZ110-110012	[00] - 04]	±12	417	%98
	MKZI10-110D15		±15	+335	86%

MINMAX TECHNOLOGY

МІИМАХ ТЕСНИОГОВУ

R

-71	
201	
0	
23	
0.0	
113	
0	
O	
Z	
\simeq	
F	
-	
$ \rightarrow $	
0	
in	
24	
>	
>	
>	
>	
0	
0	
>	
0	
POV	
POV	
D POV	
D POV	
ED POV	
ED POV	
ED POV	
FIED POV	
IFIED POV	
IFIED POV	
TIFIED POV	
TIFIED POV	
RTIFIED POV	
RTIFIED POV	
ERTIFIED POV	
ERTIFIED POV	
RTIFIED POV	
ERTIFIED POV	
CERTIFIED POV	
ERTIFIED POV	
CERTIFIED POV	
CERTIFIED POV	
'AY CERTIFIED POV	
VAY CERTIFIED POV	
'AY CERTIFIED POV	
WAY CERTIFIED POV	
VAY CERTIFIED POV	
ILWAY CERTIFIED POV	
ILWAY CERTIFIED POV	
WAY CERTIFIED POV	
AILWAY CERTIFIED POV	
AILWAY CERTIFIED POV	
ILWAY CERTIFIED POV	
AILWAY CERTIFIED POV	
AILWAY CERTIFIED POV	
AILWAY CERTIFIED POV	
AILWAY CERTIFIED POV	
RAILWAY CERTIFIED POV	
D RAILWAY CERTIFIED POV	
D RAILWAY CERTIFIED POV	
RAILWAY CERTIFIED POV	
D RAILWAY CERTIFIED POV	

RAILWAY CERTIFIED • DC-DC CONVERTERS

20W MKZI20 Series 2" x1" Package

LLF.	
0	
-	
\supset	
O	
-	
0	
\simeq	
-	
5	
Ŧ	
0	
S	
1.1	
>	
1.3	
ž	
0	
117	
1.4	
1-	
22	
LL.F	
6.3	
A	
9	
-WA	
_	
AII	
2	
2	

Model Selection Guide

50W MTQZ50 Series Quarter Brick Package					
		Genose	Scheme B	CB CE	
		Model Se	Model Selection Guide	4	
	Madel Number	Input Voltage [VDC]	Output Voltage (VDC)	Output Current [mA]max	Efficiency
MTU	MT0250-72505	0	22	10000	%06
MIC	MT0250-72512	72	12	4170	92%
MT	MT0250-72515	[43 - 101]	15	3330	92%
MT	MT0250-72524		24	2080	91%
MTO	MT0250-110505		21	10000	%06
MTM	MT0250-110512	110	12	4170	91%
	MT0250-110S15	[66 - 160]	15	3330	92%
MTG	MT0250-110S24		24	2080	91%
2					
75W MRZI75 Series (NEW) Quarter Brick Package		Canal Street	the second scheme		
		Model Se	Model Selection Guide	4	
	Model Number	Input Voltage (VDC)	Output Voltage (VDC)	Output Current [mA]max	Efficiency
MR	MRZI75-110505		ŝ	15000	89%
MR.	MRZI75-110S12		12	6250	91%
MR	MRZI75-110S15	110 [36 - 160]	15	5000	91%
MR	MRZI75-110S24		24	3125	%06
MR	MRZI75-110S54		54	1390	89%

. Voltage Voltage Current (VDC) (VDC) [mAlmax		n	512 1670		176 01	7 - 201 24		115 ±15 ±667	a	12	87	(18	112 ±833	115 ±667	ISO5 5 4000	12	100 15	IS24 (40 - 160) 24 833		1015 ±667	E CEB CE	Model Selection Guide	Input Output Output Voltage Voltage Current (VDC) (VDC) ImAlmar	5 8000	512 12 3330	IS15 15 2670	IS24 (36 - 160) 24 1670	S54 54 741	712
Number	MIZIO 21COE	247-0717NW	MKZI20-24512	MKZI20L2/S15		MKZI20-24524	MKZI20-24D12	MKZI20-24D15	MKZI20-48S05	MKZI20-48512	MKZI20-48S15	MKZI20-48524	MKZI20-48D12	MKZI20-48D15	MKZI20-110S05	MKZI20-110S12	MKZI20-110S15	MKZI20-110S24	MKZI20-110D12	MKZI20-110D15	MKZI40 Series 2" x1" Package		Model	MKZI40-110S05	MKZI40-110512	MKZI40-110515	MKZ140-110524	MKZI40-110554	MKZI40-110D12

MINMAX TECHNOLOGY

S
R
LLI
-
R
ш
>
Z
0
ŭ
S
1
S
0
11
hoho
-
2
ш
C
>
S
\geq
=
<
RA

		Efficiency	91.5%	%16	90.5%
C€ 🗾	0	Output Current [mAlmax	20000	8400	6700
ALL CB CE	Model Selection Guide	Output Voltage [VDC]	cn.	12	15
(C)	Model Se	Input Voltage [VDC]			110 [36 - 160]
U		Model Number	MRZI100-110S05	MRZI100-110512	MRZI100-110515
100W MRZI100 Series Quarter Brick Package					Ĭ

89%

1850

24

MRZI100-110554

89%

4200

24

MRZI100-110S24

	Model Selection Guide	Input Output Output Voltage Voltage Current Efficiency (VDC) (VDC) (mA)max	5 27000 90%	12 12500 90%	110 (36-160) 15 10000 89%	24 6250 88%	54 2780 88.5%
U		Model Number	MRZ1150-110S05	MRZ1150-110512	MRZ1150-110S15 (3	MRZ1150-110S24	MRZI150-110554
150W MRZI150 Series Quarter Brick Package					Ĭ		

MINMAX POWER SOLUTIONS DC-DC CONVERTERS · AC-DC POWER SUPPLIES 1-150W	15-200 15-200	Image: state in the image
MINMAX POWER SOLUTIONS DC-DC CONVERTERS · AC-DC POWER SUPPLIES 1-150W	10-5000 10-5000 10-5000 10-5000	

	Contracting of the second of t
POWER FOR A BETTER FUTURE	
FOR MORE INFO.,PLEASE GO TO -	